Reprograming bacteria to cure cancer tumors is a novel and plausible approach, but there are many other novel and plausible approaches. Cancer is a complicated and diverse disease; maybe we will eventually see “cancer” as many different diseases. We have too much uncertainty to mandate one centrally planned approach. Plus citizens have the right to keep the money they earn and to choose how to spend that money. We should keep taxation and regulations low so that diverse funders can follow their judgements to fund diverse approaches.
(p. D3) Scientists have used genetically reprogrammed bacteria to destroy tumors in mice. The innovative method one day may lead to cancer therapies that treat the disease more precisely, without the side effects of conventional drugs.
The researchers already are scrambling to develop a commercial treatment, but success in mice does not guarantee that this strategy will work in people. Still, the new study, published on Wednesday in the journal Nature Medicine, is a harbinger of things to come, said Dr. Michael Dougan, an immunologist at Massachusetts General Hospital in Boston.
. . .
Our immune cells can sometimes recognize and destroy cancer cells without assistance. But tumors may hide from the immune system by taking advantage of a gene called CD47.
Normally, the gene makes a protein that studs the surface of red blood cells, a kind of sign that reads, “Don’t Eat Me.” Immune cells see it, and pass by healthy red blood cells.
. . .
In recent years, scientists have been developing antibodies that can attach to CD47 proteins on cancer cells, masking the “Don’t Eat Me” sign. Then the body’s immune cells learn to recognize the cancer cells as dangerous and attack.
. . .
Nicholas Arpaia, an immunologist at Columbia University in New York, and Tal Danino, a synthetic biologist, wondered if they could use bacteria to turn the immune system against cancer cells — but from within tumors, rather than from outside.
. . .
The researchers inserted the nanobody gene into the bacteria, turning them into nanobody factories. Then the team injected five million of the altered microbes into mouse tumors.
The bacteria were also programmed to commit mass suicide. After they established themselves and multiplied, 90 percent of the bacteria ripped themselves apart, spilling out nanobodies. The nanobodies attached to CD47 proteins on the cancer cells, robbing them of their camouflage.
. . .
Dr. Danino co-founded a company, GenCirq, that is exploring using these reprogrammed bacteria to treat cancer. Dr. Arpaia is on the leadership board.
Their goal is to treat some forms of metastatic cancer with a pill of programmed bacteria. In earlier research, Dr. Danino and colleagues showed that bacteria swallowed by mice can reach the liver and invade tumors there.
For the full commentary see:
(Note: ellipses added.)
(Note: the online version of the commentary has the date July 3, 2019 [sic], and has the title “Matter; New Weapons Against Cancer: Millions of Bacteria Programmed to Kill.”)
The paper in PLOS Biology co-authored by Thomas Stoeger and mentioned above is: