Ozempic 25 Years Sooner Would Have Saved and Improved Many Lives

Apparently Ozempic had been discovered in the late 1980s and could have been on the market roughly 25 years ago. Pfizer decided that the likely potential revenues were not sufficient to justify the huge costs. But what if the costs had not been so huge? For instance what if we adopted the proposal suggested by Milton Friedman, and advocated by me, to stop mandating hyper-expensive Phase 3 clinical trials to prove efficacy? (The mandates to prove safety through Phase 1 and Phase 2 trials would be retained.) With lower costs, Pfizer might have moved forward. Or if Pfizer had not, some other firm probably would have entered the breach sooner. If Ozempic had been available sooner, by now it would be much cheaper. Many lives would have been saved that have been lost. Other lives would have been healthier and happier.

(p. A26) They called 2023 the year of Ozempic, but it now seems GLP-1 drugs might define an entire decade — or an even longer era. The game-changing drugs, which mimic the hormone GLP-1, offer large benefits for not just diabetes management and especially weight loss but also, apparently, heart and kidney and liver disease, Alzheimer’s and dementia, Parkinson’s and addiction of all kinds. And perhaps because of widespread use of the drugs, the obesity epidemic in America may finally and mercifully be reversing.

But of all the things we learned this year about GLP-1s, the most astonishing could be that the revolution might have started decades earlier. Researchers identified the key breakthrough for GLP-1 drugs nearly 40 years ago, it turns out, long before most Americans had even heard the phrase “obesity epidemic.”

This summer, a former dean of Harvard Medical School, Jeffrey Flier, published a long personal reflection that doubled as an alternate history of what may well be the most spectacular and impactful medical breakthrough of the century so far. In 1987, Flier co-founded a biotech start-up that pursued GLP-1 as a potential treatment for diabetes, not long after it had first been identified by researchers who’d also found that the hormone enhanced insulin secretion in the presence of glucose.

The startup obtained worldwide rights to develop GLP-1 as a metabolic therapy from a group of those researchers, based at Massachusetts General Hospital. They even generated clinical results that suggested it might have promise as a weight-loss drug as well — only to have Pfizer, which had agreed to fund the research, withdraw its support, without providing the researchers with an especially satisfying explanation. Instead, Pfizer told Flier and his partners that the company didn’t believe there would be a market for another injectable diabetes treatment after insulin. Well, Flier tells me, “they were wrong.”

. . .

. . . Flier’s memoir is not just a lament for what might have been. In the aftermath of the pandemic emergency, as citizens and officials alike have embraced a more libertarian attitude toward public health, there’s been a similar drift in the public conversation about drug discovery and development. Operation Warp Speed is often held up as a new model — calls for an Operation Warp Speed 2.0 have been followed by those for an Operation Warp Speed for everything — . . .

Many of the same reformers will complain about all the red tape at the F.D.A. and C.D.C., tallying up huge mortality costs imposed by slow-moving government, arguing for human challenge trials in which individuals volunteer to take untested drugs and be deliberately infected and even talking about the invisible graveyard of unnecessary regulation and delay.

This is all fine and good — there are surely lots of things those agencies can speed up. And in recent years, reformers of various stripes have lobbied some worthy additional proposals into the biomedical zeitgeist — for a system based not on patents but on huge and direct cash prizes for medical breakthroughs, for instance, or one helped along by advance market commitments or benevolent patent extensions. Just last week the researchers Willy Chertman and Ruxandra Tesloianu published “The Case for Clinical Trial Abundance,” an invigorating manifesto for drug development reform.

. . . in focusing on government bureaucracy as the major biomedical bottleneck, we are seeing just one piece of the picture and overlooking what is perhaps the central challenge of research and development — that it is, at present, so complicated that difficulties or bad decisions at any stage can stifle the whole decades-long process, distorting the actual medical and public-health functions of drug development in countless ways.

For the full commentary see:

David Wallace-Wells. “We Could Have Had Ozempic Years Ago.” The New York Times, SundayOpinion Section (Sunday, Jan. 5, 2025): 11.

(Note: ellipses added.)

(Note: the online version of the commentary has the date Dec. 25, 2024, and has the title “Pfizer Stopped Us From Getting Ozempic Decades Ago.”)

Dr. Flier’s published “memoir” mentioned above is:

Flier, Jeffrey S. “Drug Development Failure: How GLP-1 Development Was Abandoned in 1990.” Perspectives in Biology and Medicine 67, no. 3 (Summer 2024): 325-36.

“The Clinical Trial Manifesto” mentioned above is the introductory essay in the compilation referenced below. Another essay that looks promising in the compilation is “Unblocking Human Challenge Trials for Faster Progress.”

Chertman, Willy, and Ruxandra Tesloianu, eds. The Case for Clinical Trial Abundance: A Series of Short Papers Outlining Reform Possibilities for Our Nation’s Clinical Trials. Washington, DC: The Institute for Progress (IFP), 2024.

Welcome Immigrant Innovators

Empirical research by reputable economists at some top schools concludes that although “immigrants represent 16 percent of all US inventors . . . immigrants are responsible for 36% of aggregate innovation, two-thirds of which is due to their innovation externalities on their native-born collaborators” (Bernstein et al. 2022, p. 1). (I have not yet looked carefully at this research, but have looked at other papers by Rebecca Diamond (no relation), finding them important and well-done.)

We should make it easier for innovators to enter the United States and harder for murderers and thieves to enter. And whatever immigration rules we adopt, we should enforce. We are unfair to those who follow our immigration rules if we allow others to enter the United States without following our rules.

Beyond that, I think our rules can be fairly generous, even letting in many non-innovative immigrants, if at the same time we adopt policies that give a probable path forward to current Americans who are among the least well-off. In a working paper that I hope to return to soon, I argue that we can create this path forward by unbinding entrepreneurs so that they can create more and better jobs for the least well-off.

(I thank my former student and current friend Aaron Brown for alerting me to the article on immigration.)

The empirical research on immigrant innovators mentioned above is:

Bernstein, Shai, Rebecca Diamond, Abhisit Jiranaphawiboon, Timothy McQuade, and Beatriz Pousada. “The Contribution of High-Skilled Immigrants to Innovation in the United States.” National Bureau of Economic Research Working Paper #30797, December 2022.

My working paper mentioned above is:

Diamond, Arthur M., Jr. “Robustly Redundant Labor Markets.” Working Paper. 2021.

Innovative Medical Project Entrepreneur Karikó Long Persevered to Develop mRNA Technology Behind Covid-19 Vaccines

The basic science and technology behind mRNA did not come easy and did not come quick. If the skeptics of Covid-19 vaccines knew this they might be less skeptical because one of the reasons they sometimes give for their skepticism is the speed with which the vaccines were developed. (Other reasons for skepticism I think are more defensible, such as the worry that the authorities downplayed the real side-effects that some vaccine recipients suffered from the vaccines. But on balance I still think the vaccines were a great achievement.) One of the heroes of the long slog is Katalin Karikó. Part of her story is sketched in the passages quoted below. She is a good example of an innovative medical project entrepreneur. When she was named a winner of the Nobel Prize she identified part of what it takes to succeed: “we persevere, we are resilient” (Karikó as quoted in Mosbergen, Loftus, and Zuckerman 2023, p. A2).

(p. A2) The University of Pennsylvania is basking in the glow of two researchers who this week were awarded the Nobel Prize in medicine for their pioneering work on messenger RNA.

Until recently, the school and its faculty largely disdained one of those scientists.

Penn demoted Katalin Karikó, shunting her to a lab on the outskirts of campus while cutting her pay. Karikó’s colleagues denigrated her mRNA research and some wouldn’t work with her, according to her and people at the school. Eventually, Karikó persuaded another Penn researcher, Drew Weissman, to work with her on modifying mRNA for vaccines and drugs, though most others at the school remained skeptical, pushing other approaches.

. . .

. . . on Monday [Oct. 2, 2023], when Karikó and Weissman were awarded the Nobel, on top of prestigious science prizes in recent years, the school expressed a different perspective on their work.

The reversal offers a glimpse of the clubby, hothouse world of academia and science, where winning financial funding is a constant burden, securing publication is a frustrating challenge and those with unconventional or ambitious approaches can struggle to gain support and acceptance.

“It’s a flawed system,” said David Langer, who is chair of neurosurgery at Lenox Hill Hospital, spent 18 years studying and working at Penn and was Karikó’s student and collaborator.

. . .

Penn wasn’t the only institution to doubt Karikó’s belief in mRNA when many other scientists pursued a different gene-based technology. In a reflection of how radical her ideas were at the time, she had difficulty publishing her research and obtaining big grants—prerequisites for those hoping to get ahead in science and gain academic promotions.

Another reason her relationship with the school frayed: Karikó could antagonize colleagues. In presentations, she often was the first to point out mistakes in their work. Karikó didn’t intend to offend, she just felt the need to call out mistakes, she later said.

For the full story see:

Gregory Zuckerman. “Penn Toasts Winning Scientist After Shunning Her for Years.” The Wall Street Journal (Thursday, Oct. 5, 2023 [sic]): A2.

(Note: ellipses, and bracketed date, added.)

(Note: the online version of the story has the date October 4, 2023 [sic], and has the title “After Shunning Scientist, University of Pennsylvania Celebrates Her Nobel Prize.”)

The source of the Karikó quote in my opening comments is:

Dominique Mosbergen, Peter Loftus and Gregory Zuckerman. “Pair Met With Doubts, Now Win Nobel Prize.” The Wall Street Journal (Tuesday, Oct. 3, 2023 [sic]): A1-A2.

(Note: the online version of the story was updated October 2, 2023 [sic], and has the title “Pioneers of mRNA Find Redemption in Nobel Prize.”)

For more detailed accounts of Karikó’s life, struggles, and research see:

Karikó, Katalin. Breaking Through: My Life in Science. New York: Crown, 2023.

Zuckerman, Gregory. A Shot to Save the World: The inside Story of the Life-or-Death Race for a Covid-19 Vaccine. New York: Portfolio/Penguin, 2021.

A.I. May Create More and Better Jobs

In my Openness book, I made good use of The New Division of Labor book by Levy and Murnane that gave plentiful evidence that the innovative dynamism exemplified by the computer revolution on balance resulted in more and better jobs. The Levy/Murnane book is now over 20 years old, so the skeptical might question whether what was true about computers is also still true about artificial intelligence (A.I.). Now one of the book co-authors, Frank Levy, has co-authored a new working paper in which he answers “yes.” The working paper has recently been summarized by Steve Lohr.

Steve Lohr’s article is:

Steve Lohr. “A.I. Is Poised to Put Midsize Cities on the Map.” The New York Times (Mon., December 30, 2024): B1-B2.

(Note: the online version of the Steve Lohr article has the date Dec. 26, 2024, and has the title “How A.I. Could Reshape the Economic Geography of America.”)

The academic working paper co-authored by Frank Levy, that Lohr summarized in The New York Times article mentioned and cited above is:

Abrahams, Scott, and Frank S. Levy. “Could Savannah Be the Next San Jose? The Downstream Effects of Large Language Models.” In SSRN, June 23, 2024.

The book co-authored by Frank Levy and mentioned in my initial comments is:

Levy, Frank, and Richard J. Murnane. The New Division of Labor: How Computers Are Creating the Next Job Market. Princeton, NJ: Princeton University Press, 2004.

My book mentioned in my initial comments is:

Diamond, Arthur M., Jr. Openness to Creative Destruction: Sustaining Innovative Dynamism. New York: Oxford University Press, 2019.

Price Controls on Drugs Reduce Drug Innovation

Price controls on drugs may reduce some short-term healthcare costs for consumers, but will also reduce the innovation that brings us more cures, less pain, and fewer side effects. If we want to both reduce costs for consumers and increase innovation, we should end government mandates for the Phase 3 clinical trials–the phase of clinical trials that make up most of the cost of gaining regulatory approval.

(p. A19) The Biden White House has proposed requiring Medicare to “negotiate” drug prices.

. . .

Unfortunately, the debate is being informed by erroneous Congressional Budget Office analysis. CBO says . . . the supply of new drugs will only be reduced by 5% from 2021 to 2039, a loss of only two drugs a year.

The CBO minimizes the harmful effects on innovation, but the entire supply chain that funds medical R&D relies on rate-of-return assessments driven by future earnings. An analysis I released this week finds 10 times the effect on R&D, a loss of up to some 340 drugs over the same period.

The White House also claims that price controls won’t hamstring innovation because they only govern top-selling drugs. But the occasional blockbuster funds the roughly 90% of pipeline drugs that never pass Food and Drug Administration review. CBO even acknowledges that only the top 7% of Medicare drugs drive U.S. profits. Targeting financially successful drugs could make large segments of the development portfolio unprofitable, even if such drugs aren’t affected by price controls.

For the full commentary see:

Tomas J. Philipson. “Biden’s Price Controls Will Make Good Health More Expensive.” The Wall Street Journal (Thursday, Sept. 16, 2021 [sic]): A19.

(Note: ellipses added.)

(Note: the online version of the commentary has the date September 15, 2021 [sic], and has the same title as the print version.)

The research brief co-authored by Philipson and mentioned above is:

Philipson, Tomas J., and Troy Durie. “The Evidence Base on the Impact of Price Controls on Medical Innovation.” Issue Brief. Becker Friedman Institute, University of Chicago, Sept. 14, 2021.

Supporting Philipson’s argument is a 2024 working paper showing that Medicare-mandated price cuts in medical equipment has resulted in less innovation in medical equipment:

Ji, Yunan, and Parker Rogers. “The Long-Run Impacts of Regulated Price Cuts: Evidence from Medicare.” NBER Working Paper #33083, Oct. 2024.

Regulations Discourage Search for Magic Bullet Cures

The so-called “Inflation Reduction Act” mandates that several of the biggest blockbuster drugs must have prices negotiated between Medicare and Pharma firms. As the commentary quoted below suggests, this creates an incentive for Pharma firms to develop many middling drugs rather than a couple of blockbuster drugs. Paul Ehrlich’s “magic bullet” may be impossible, but we will never know if no-one is trying to discover it.creates an

(p. B10) A true home run in the drug industry is when a company develops a mega-blockbuster that transforms its finances for years.

But with Medicare trying to bring costs down by targeting the industry’s most expensive drugs, a portfolio of medium-size moneymakers that can keep your name off the U.S. government’s naughty list can be a wise strategy.

That is at least one reason why big pharma is investing heavily in biotech companies developing antibody-drug conjugates. Known as ADCs, these treatments work like a guided missile by pairing antibodies with toxic agents to fight cancer. In short, they enable a more targeted form of chemotherapy that goes straight into the cancer cells while minimizing harm to healthy cells.

. . .

One reason most ADCs aren’t likely to become mega-blockbusters like Keytruda, a cancer immunotherapy that has earned 35 approvals across 16 types of cancer, is that they aren’t one-size-fits-all drugs. Instead, they are designed to target a specific protein that is expressed on the surface of a cancer cell. That means that each drug is made with an antibody targeting a subset of cancer. There are more than 100 ADCs being tested in humans by pharma and biotech companies.

For the full commentary see:

David Wainer. “Heard on the Street; Drug Industry’s Secret Weapon: ‘Guided Missiles’.” The Wall Street Journal (Friday, Oct. 27, 2023 [sic]): B10.

(Note: ellipsis added.)

(Note: the online version of the commentary has the date October 26, 2023 [sic], and has the title “Heard on the Street; ‘Guided Missile Drugs’ Could Be Big Pharma’s Secret Weapon.”)

Time Constraints for Tenure, Promotion, and Funding Decisions Lead Academic Biologists to Over-Study Already-Studied Genes

George Stigler argued that when most economists were self-funded business practitioners economics was more applied and empirical, while after most economists were academics funded by endowments or the government economics became less applied and more formal. [In a quick search I failed to identify the article where Stigler says this–sorry.] A similar point was made to science more broadly by Terence Kealey in his thought-provoking The Economic Laws of Scientific Research. The article quoted below argues persuasively that research on human genes is aligned with the career survival goals of academics, rather than with either the faster advance of science or the quicker cure of diseases like cancer. The alignment could be improved if more of research funding came from a variety of private sources.

(p. D3) In a study published Tuesday [Sept. 18, 2018] in PLOS Biology, researchers at Northwestern University reported that of our 20,000 protein-coding genes, about 5,400 have never been the subject of a single dedicated paper.

Most of our other genes have been almost as badly neglected, the subjects of minor investigation at best. A tiny fraction — 2,000 of them — have hogged most of the attention, the focus of 90 percent of the scientific studies published in recent years.

A number of factors are largely responsible for this wild imbalance, and they say a lot about how scientists approach science.

. . .

It was possible, . . ., that scientists were rationally focusing attention only on the genes that matter most. Perhaps they only studied the genes involved in cancer and other diseases.

That was not the case, it turned out. “There are lots of genes that are important for cancer, but only a small subset of them are being studied,” said Dr. Amaral.

. . .

A long history helps, . . . . The genes that are intensively studied now tend to be the ones that were discovered long ago.

Some 16 percent of all human genes were identified by 1991. Those genes were the subjects of about half of all genetic research published in 2015.

One reason is that the longer scientists study a gene, the easier it gets, noted Thomas Stoeger, a post-doctoral researcher at Northwestern and a co-author of the new report.

“People who study these genes have a head start over scientists who have to make tools to study other genes,” he said.

That head start may make all the difference in the scramble to publish research and land a job. Graduate students who investigated the least studied genes were much less likely to become a principal investigators later in their careers, the new study found.

“All the rewards are set up for you to study what has been well-studied,” Dr. Amaral said.

“With the Human Genome Project, we thought everything was going to change,” he added. “And what our analysis shows is pretty much nothing changed.”

If these trends continue as they have for decades, the human genome will remain a terra incognito for a long time. At this rate, it would take a century or longer for scientists to publish at least one paper on every one of our 20,000 genes.

That slow pace of discovery may well stymie advances in medicine, Dr. Amaral said. “We keep looking at the same genes as targets for our drugs. We are ignoring the vast majority of the genome,” he said.

Scientists won’t change their ways without a major shift in how science gets done, he added. “I can’t believe the system can move in that direction by itself,” he said.

Dr. Stoeger argued that the scientific community should recognize that a researcher who studies the least known genes may need extra time to get results.

“People who do something new need some protection,” he said.

For the full commentary see:

Carl Zimmer. “Matter; The Problem With DNA Research.” The New York Times (Tuesday, September 25, 2018 [sic]): D3.

(Note: ellipses, and bracketed date, added.)

(Note: the online version of the commentary has the date Sept. 18, 2018 [sic], and has the title “Matter; Why Your DNA Is Still Uncharted Territory.” Where there are differences in wording between the versions, the passages quoted above follow the online version.)

The paper in PLOS Biology co-authored by Thomas Stoeger and mentioned above is:

Stoeger, Thomas, Martin Gerlach, Richard I. Morimoto, and Luís A. Nunes Amaral. “Large-Scale Investigation of the Reasons Why Potentially Important Genes Are Ignored.” PLOS Biology 16, no. 9 (2018): e2006643.

Kealey’s book, praised above, is:

Kealey, Terence. The Economic Laws of Scientific Research. New York: St. Martin’s Press, 1996.

Ozempic Profits Poured into Massive Supercomputer Meant to Power AI for Future Drug Development

I think AI is currently being oversold. But I am very ignorant and could be wrong, so I favor a diversity of privately-funded bets on what will work to bring us future breakthrough innovations.

(p. B2) Two of the world’s most important companies are now in a partnership born from the success of their most revolutionary products. The supercomputer was built with technology from Nvidia—and money from the Novo Nordisk Foundation. The charitable organization has become supremely wealthy as the largest shareholder in Novo Nordisk, which means this project was made possible by the breakthrough drugs that have sent the Danish company’s stock price soaring.

To put it another way, it’s the first AI supercomputer funded by Ozempic.

It was named Gefion after the goddess of Norse mythology who turned her sons into oxen so they could plow the land that would become Denmark’s largest island.

. . .

Whatever you call it, Gefion is a beast. It is bigger than a basketball court. It weighs more than 30 tons. It took six months to manufacture and install. It also required an investment of $100 million.

. . .

When it’s fully operational, the AI supercomputer will be available to entrepreneurs, academics and scientists inside companies like Novo Nordisk, which stands to benefit from its help with drug discovery, protein design and digital biology.

For the full commentary see:

Ben Cohen. “It’s a Giant New Supercomputer That Might Transform an Entire Country.” The Wall Street Journal (Saturday, Nov. 2, 2024): B2.

(Note: ellipses added.)

(Note: the online version of the commentary has the date November 1, 2024, and has the title “Science of Success; The Giant Supercomputer Built to Transform an Entire Country—and Paid For by Ozempic.”)

AI Algorithms Lack Intelligence Since They Are “Just Predicting the Next Word in a Text”

(p. B5) Yann LeCun helped give birth to today’s artificial-intelligence boom. But he thinks many experts are exaggerating its power and peril, and he wants people to know it.

. . .

On social media, in speeches and at debates, the college professor and Meta Platforms AI guru has sparred with the boosters and Cassandras who talk up generative AI’s superhuman potential, from Elon Musk to two of LeCun’s fellow pioneers, who share with him the unofficial title of “godfather” of the field. They include Geoffrey Hinton, a friend of nearly 40 years who on Tuesday was awarded a Nobel Prize in physics, and who has warned repeatedly about AI’s existential threats.

. . .

LeCun thinks AI is a powerful tool.

. . .

At the same time, he is convinced that today’s AIs aren’t, in any meaningful sense, intelligent—and that many others in the field, especially at AI startups, are ready to extrapolate its recent development in ways that he finds ridiculous.

If LeCun’s views are right, it spells trouble for some of today’s hottest startups, not to mention the tech giants pouring tens of billions of dollars into AI. Many of them are banking on the idea that today’s large language model-based AIs, like those from OpenAI, are on the near-term path to creating so-called “artificial general intelligence,” or AGI, that broadly exceeds human-level intelligence.

OpenAI’s Sam Altman last month said we could have AGI within “a few thousand days.” Elon Musk has said it could happen by 2026.

LeCun says such talk is likely premature. When a departing OpenAI researcher in May talked up the need to learn how to control ultra-intelligent AI, LeCun pounced. “It seems to me that before ‘urgently figuring out how to control AI systems much smarter than us’ we need to have the beginning of a hint of a design for a system smarter than a house cat,” he replied on X.

He likes the cat metaphor. Felines, after all, have a mental model of the physical world, persistent memory, some reasoning ability and a capacity for planning, he says. None of these qualities are present in today’s “frontier” AIs, including those made by Meta itself.

Léon Bottou, who has known LeCun since 1986, says LeCun is “stubborn in a good way”—that is, willing to listen to others’ views, but single-minded in his pursuit of what he believes is the right approach to building artificial intelligence.

Alexander Rives, a former Ph.D. student of LeCun’s who has since founded an AI startup, says his provocations are well thought out. “He has a history of really being able to see gaps in how the field is thinking about a problem, and pointing that out,” Rives says.

. . .

The large language models, or LLMs, used for ChatGPT and other bots might someday have only a small role in systems with common sense and humanlike abilities, built using an array of other techniques and algorithms.

Today’s models are really just predicting the next word in a text, he says. But they’re so good at this that they fool us. And because of their enormous memory capacity, they can seem to be reasoning, when in fact they’re merely regurgitating information they’ve already been trained on.

“We are used to the idea that people or entities that can express themselves, or manipulate language, are smart—but that’s not true,” says LeCun. “You can manipulate language and not be smart, and that’s basically what LLMs are demonstrating.”

For the full commentary see:

Christopher Mims. “Keywords: This AI Pioneer Thinks AI Is Dumber Than a Pet Cat.” The Wall Street Journal (Saturday, Oct. 12, 2024): B5.

(Note: ellipses added.)

(Note: the online version of the commentary was updated Oct. 11, 2024, and has the title “Keywords: This AI Pioneer Thinks AI Is Dumber Than a Cat.” The sentence starting with “Léon Bottou” appears in the online, but not the print, version. Where there are small differences between the versions, the passages quoted above follow the online version.)

Trust Ventures Engages in “Trench Warfare” Against Regulations Binding the Firms It Finances

(p. A15) Another “Ghostbusters” movie is in theaters, but what we need are regulation busters. I spoke with Salen Churi and Brooke Fallon from Trust Ventures, a $500 million Texas-based venture-capital firm. It’s almost as if they are wearing plasma proton packs.

. . .

Trust Ventures came together, Mr. Churi said, because no one thinks “ ‘I hate innovation,’ except perhaps for incumbents. We have crises in the most human of industries—energy, healthcare, housing. Everyone thought I was nuts. They’re like, ‘Why would you invest in companies with regulatory problems?’ ” Good question.

Most venture capitalists invest and help startups with new strategies and hiring a team. Mr. Churi describes what he does as “trench warfare,” fighting with regulators and incumbents deal by deal.

. . .

Mr. Churi explains that “when you get a great new technology that’s fundamentally different, regulators just want to shove you in the old box, right? Our challenge is to say, ‘Well, actually, this needs a new box.’ Otherwise, it’s going to sit on the shelf.”

Eye exams are a great example of an old box. The American Optometric Association is powerful, and many states banned online vision tests. “Regulators don’t care about all those single mothers who have to pay three times as much or that people in Central Illinois have to drive three hours,” Mr. Churi says.

The pandemic loosened telehealth rules, providing an opening to test your eyes with your own smartphone. As lockdowns ended, Trust Ventures worked with the startup Visibly in several states to legalize online eye exams permanently. They got help from their investors network—some of their limited partners “are great American families,” Mr. Churi says. Visibly’s Food and Drug Administration-approved online eye tests, now in 36 states, cost as little as $35 instead of three times as much at LensCrafters or box-store-located optometrists.

For the full commentary see:

Andy Kessler. “Inside View; America’s New Regulation Busters.” The Wall Street Journal (Monday, April 15, 2024): A15.

(Note: ellipses added.)

(Note: the online version of the commentary has the date April 14, 2024, and has the same title as the print version.)

Policy Reform, Such as Smaller Research Teams, Needed for Faster Big Breakthroughs

(p. D3) Miracle vaccines. Videophones in our pockets. Reusable rockets. Our technological bounty and its related blur of scientific progress seem undeniable and unsurpassed. Yet analysts now report that the overall pace of real breakthroughs has fallen dramatically over the past almost three-quarters of a century.

This month in the journal Nature, the report’s researchers told how their study of millions of scientific papers and patents shows that investigators and inventors have made relatively few breakthroughs and innovations compared with the world’s growing mountain of science and technology research. The three analysts found a steady drop from 1945 through 2010 in disruptive finds as a share of the booming venture, suggesting that scientists today are more likely to push ahead incrementally than to make intellectual leaps.

“We should be in a golden age of new discoveries and innovations,” said Michael Park, an author of the paper and a doctoral candidate in entrepreneurship and strategic management at the University of Minnesota.

. . .

The new method looks at citations more deeply to separate everyday work from true breakthroughs more effectively. It tallies citations not only to the analyzed piece of research but to the previous studies it cites. It turns out that the previous work is cited far more often if the finding is routine rather than groundbreaking. The analytic method turns that difference into a new lens on the scientific enterprise.

The measure is called the CD index after its scale, which goes from consolidating to disrupting the body of existing knowledge.

Dr. Funk, who helped to devise the CD index, said the new study was so computationally intense that the team at times used supercomputers to crunch the millions of data sets. “It took a month or so,” he said. “This kind of thing wasn’t possible a decade ago. It’s just now coming within reach.”

The novel technique has aided other investigators, such as Dr. Wang. In 2019, he and his colleagues reported that small teams are more innovative than large ones. The finding was timely because science teams over the decades have shifted in makeup to ever-larger groups of collaborators.

In an interview, James A. Evans, a University of Chicago sociologist who was a co-author of that paper with Dr. Wang, called the new method elegant. “It came up with something important,” he said. Its application to science as a whole, he added, suggests not only a drop in the return on investment but a growing need for policy reform.

“We have extremely ordered science,” Dr. Evans said. “We bet with confidence on where we invest our money. But we’re not betting on fundamentally new things that have the potential to be disruptive. This paper suggests we need a little less order and a bit more chaos.”

For the full story see:

William J. Broad. “What Happened to All of Science’s Big Breakthroughs?” The New York Times (Tuesday, January 24, 2023 [sic]): D3.

(Note: ellipses added.)

(Note: the online version of the story has the date Jan. 17, 2023 [sic], and has the same title as the print version.)

For Nature paper mostly discussed in the passages quoted above is:

Park, Michael, Erin Leahey, and Russell J. Funk. “Papers and Patents Are Becoming Less Disruptive over Time.” Nature 613, no. 7942 (Jan. 2023): 138-44.

The paper on team size, and co-authored by Wang, is:

Wu, Lingfei, Dashun Wang, and James A. Evans. “Large Teams Develop and Small Teams Disrupt Science and Technology.” Nature 566, no. 7744 (Feb. 2019): 378-82.