The Second Arthur Mansfield Diamond Would Be 100 Today

Dad holding me as a baby in 1953.
Dad holding me as a baby in 1953.

Happy Birthday Dad! He was the second Arthur Mansfield Diamond and would be 100 today.

I think if we adopt the right policies, many of us could live to 100. Too late for Dad, and almost certainly for me.

The first Arthur Mansfield Diamond died in 1933, I think. I was told he played the piano by ear and I saw an article saying that when he was a young man he briefly was a book-keeper for the family vaudeville activities. He looked dapper in a straw hat and knew Knute Rockne of Notre Dame. My Dad was eight when cancer took the first Arthur Mansfield Diamond. My Grandma, with no college degree, raised four children during the Great Depression. Cabbage was nutritious and cheap, so Grandma served a lot of sauerkraut. As an adult Dad hated sauerkraut.

Dad was always reading. He is the only person I ever met who read all three volumes of Solzhenitsyn’s Gulag Archipelago. And he read a conservative reader’s digest weekly (or monthly?) newspaper called Human Events. He was a Republican lawyer in an overwhelmingly Democratic county.

When my brothers and I were young he read aloud to us most of the Oz books, and other books including Atlas Shrugged. Thank you Dad, especially for that.

I wish I had finished my book before he died–he would have read it, argued with me about parts of it, but I think mostly liked it.

Dad was active in Toastmasters, a self-help organization for those who want to improve their public speaking. He rose to become the International President. Their headquarters is near Disneyland. When Dad first joined the Toastmasters board, he spent some time in the park. When he returned from that first trip, I remember his excitement at the then-new attraction, the Tiki Room–seeing what was possible in audio animatronics. Mom and Dad took us to Disneyland and on road trips to most of the U.S.

I remember Dad telling me in his last year that one of his regrets is that he won’t know how things turn out.

Dad was not perfect; neither am I. But I miss him and wish I could still talk with him, and thank him for his wit, his curiosity, and his courage in holding unpopular views when he thought they were right.

The American Academy of Pediatrics Ignored Early Evidence that Having Infants AVOID Peanuts CAUSES Peanut Allergy

I have praised Marty Makary’s Blind Spots in earlier posts, partly for its compelling examples of where mainstream medicine has failed to adapt to new, strong, sometimes observational evidence. His opening major example is the American Academy of Pediatrics’s long ban on giving peanuts to infants and toddlers. Instead of protecting them from peanut allergy, the ban caused a large increase in peanut allergy. In the essay quoted below, Makary summarizes the peanut example from Blind Spots.

(p. C4) In 1999, researchers at Mount Sinai Hospital estimated the incidence of peanut allergies in children to be 0.6%. But starting in the year 2000, the prevalence began to surge. Doctors began to notice that more children affected had severe allergies.

What had changed wasn’t peanuts but the advice doctors gave to parents about them. The American Academy of Pediatrics (AAP) wanted to respond to public concern by telling parents what they should do to protect their kids from peanut allergies. There was just one problem: Doctors didn’t actually know what precautions, if any, parents should take. Rather than admit that, in the year 2000 the AAP issued a recommendation for children 0 to 3 years old and pregnant and lactating mothers to avoid all peanuts.

. . .

Dr. Gideon Lack, a pediatric allergist and immunologist in London, had a different view. In 2000 he was giving a lecture in Israel on allergies and asked the roughly 200 pediatricians in the audience, “How many of you are seeing kids with a peanut allergy?” Only two or three raised their hands. Back in London, nearly every pediatrician had raised their hand to the same question.

Startled by the discrepancy, he had a eureka moment. Many Israeli infants are fed a peanut-based food called Bamba. To Lack, this was no coincidence, and he quickly assembled researchers in Tel Aviv and Jerusalem to launch a formal study. It found that Jewish children in Israel had one-tenth the rate of peanut allergies compared with Jewish children in the U.K., suggesting that genetic predisposition was not responsible, as the medical establishment had assumed.

Lack and his Israeli colleagues titled their paper “Early Consumption of Peanuts in Infancy Is Associated with a Low Prevalence of Peanut Allergy.” However, the 2008 publication was not enough to uproot groupthink. Avoiding peanuts had been the correct answer on medical school tests and board exams, which were written and administered by the American Board of Pediatrics. For nearly a decade after AAP’s peanut avoidance recommendation, neither the National Institute of Allergy and Infectious Diseases (NIAID) nor other institutions would fund a robust study to evaluate whether the policy was helping or hurting children.

Meanwhile, the more that health officials implored parents to follow the recommendation, the worse peanut allergies got. From 2005 to 2014, the number of children going to the emergency department because of peanut allergies tripled in the U.S. By 2019, a report estimated that 1 in every 18 American children had a peanut allergy.  . . .

In a second clinical trial, published in the New England Journal of Medicine in 2015, Lack compared one group of infants who were exposed to peanut butter at 4-11 months of age to another group that had no peanut exposure. He found that early exposure resulted in an 86% reduction in peanut allergies by the time the child reached age 5 compared with children who followed the AAP recommendation.

. . .

When modern medicine issues recommendations based on good scientific studies, it shines. Conversely, when doctors rule by opinion and edict, we have an embarrassing track record. Unfortunately, medical dogma may be more prevalent today than in the past because intolerance for different opinions is on the rise, in medicine as throughout society.

For the full essay see:

Marty Makary. “Who’s Responsible for America’s Peanut Allergy Epidemic?” The Wall Street Journal (Saturday, Sept. 21, 2024): C4.

(Note: the online version of the essay has the date September 19, 2024, and has the title “How Pediatricians Created the Peanut Allergy Epidemic.”)

Makary’s essay is adapted from his book:

Makary, Marty. Blind Spots: When Medicine Gets It Wrong, and What It Means for Our Health. New York: Bloomsbury Publishing, 2024.

Dr. Marty Makary Refuses to Stop Asking Questions

I am almost finished reading Marty Makary’s Blind Spots book that is discussed in the passages quoted below from a column by Pamela Paul. Makary writes with wit and clarity. But the thought-provoking examples are what make the book great. And the thought that the examples provoke is that medicine would progress more quickly to more cures if doctors had greater freedom in what they say, write, research, and prescribe.

Marty Makary has been named by President-Elect Trump to head the Food and Drug Administration (F.D.A.)

(p. A22) You probably know about the surge in childhood peanut allergies. Peanut allergies in American children more than tripled between 1997 and 2008, after doctors told pregnant and lactating women to avoid eating peanuts and parents to avoid feeding them to children under 3. This was based on guidance issued by the American Academy of Pediatrics in 2000.

You probably also know that this guidance, following similar guidance in Britain, turned out to be entirely wrong and, in fact, avoiding peanuts caused many of those allergies in the first place.

. . .

As early as 1998, Gideon Lack, a British pediatric allergist and immunologist, challenged the guidelines, saying they were “not evidence-based.” But for years, many doctors dismissed Dr. Lack’s findings, even calling his studies that introduced peanut butter early to babies unethical.

. . .

Finally, in 2017, following yet another definitive study by Lack, the A.A.P. fully reversed its early position, now telling parents to feed their children peanuts early.

But by then, thousands of parents who conscientiously did what medical authorities told them to do had effectively given their children peanut allergies.

This avoidable tragedy is one of several episodes of medical authorities sticking to erroneous positions despite countervailing evidence that Marty Makary, a surgeon and professor at Johns Hopkins School of Medicine, examines in his new book, “Blind Spots: When Medicine Gets It Wrong, and What It Means for Our Health.”

. . .

While these mistakes are appalling, more worrisome are the enduring root causes of those errors. Medical journals and conferences regularly reject presentations and articles that overturn conventional wisdom, even when that wisdom is based on flimsy underlying data. For political or practical reasons consensus is often prized over dissenting opinions.

“We’re seeing science used as political propaganda,” Makary told me when I spoke to him by phone. But, he argues, mistakes can’t be freely corrected or updated unless researchers are encouraged to pursue alternative research.

“Asking questions has become forbidden in some circles,” Makary writes. “But asking questions is not the problem, it’s the solution.”

For the full commentary see:

Pamela Paul. “Why Medicine Still Has Such Blind Spots.” The New York Times (Friday, September 20, 2024): A22.

(Note: ellipses added.)

(Note: the online version of the commentary has the date Sept. 19, 2024, and has the title “The Medical Establishment Closes Ranks, and Patients Feel the Effects.” In the print version the word “caused” is emphasized by italics.)

The book praised in my opening comments and in Pamela Paul’s commentary is:

Makary, Marty. Blind Spots: When Medicine Gets It Wrong, and What It Means for Our Health. New York: Bloomsbury Publishing, 2024.

“More Than 60%” of Medicines Are Based on Chemicals First “Produced by Living Organisms”

Over millennia life (plants, microbes, fungi) developed toxins to protect them from predators. If humans can identify these toxins, they can use them to likewise protect themselves against diseases. Through serendipitous accident and random trial and error, over tens of thousands of years, indigenous peoples discovered and made use of some of these toxins. We should make use of this knowledge even though it is not certified by any randomized double-blind clinical trials performed by highly credentialed academics. Cassandra Quave, author of the essay quoted below, is working to do this, as is Berkeley professor Noah Whiteman, the author of Most Delicious Poison.

(p. C4) My team moved in unison to clip bits of plants, press them into sheets of paper and stuff them into large collection bags. Later, in my research lab at Emory University, we would test their chemical compounds against antibiotic-resistant pathogens. The possibility of developing new drugs from elements of nature such as our leaf clippings is important for everyone, but it’s personal for me; after losing my leg as a child, I nearly died as a result of postsurgical infection.

In recent decades, with the advance of high-tech methods for synthesizing molecules, the search for useful medical compounds from the natural world, especially plants, has faded. Fortunately, just as we’ve started to recognize the limits of artificial synthesis, even newer technology is now helping scientists like me to release more of nature’s medicinal secrets.

Plants have been the source of countless revolutionary medicines since the 19th century. Scientists derived aspirin from the willow tree, for instance, and morphine from opium poppies. They found quinine, the first treatment for malaria, in the bark of the Amazon’s fever tree (and more than a century later, scientists in China found that artemisinin from sweet wormwood was also a powerful anti-malarial agent). Many groundbreaking cancer drugs also came from plants—Taxol from the Pacific yew tree, vincristine from the Madagascar periwinkle.

Microbes found in soil and fungi launched a golden era of advances in antibiotics, starting with the discovery of penicillin in a mold in 1928. By the peak in the 1950s, scientists were isolating a wide range of antimicrobial compounds from microbes found in nature. But such work ended all too soon, as scientists stopped discovering effective new compounds.

Many of the drugs originally drawn from nature are now synthesized in pharmaceutical factories, using the blueprint of their chemical structures. Natural products (that is, chemicals genetically encoded and produced by living organisms) account for more than 60% of the pharmaceuticals that we possess.

Over the past 30 years, however, the focus on nature waned as scientists instead built large chemical libraries filled with tens of thousands of lab-made molecules. One hope was that the next antibiotic breakthrough would emerge from making and testing enough of these synthetic compounds. But that effort has fallen flat: Though other medicines have been developed in the lab, no new registered classes of antibiotics have been discovered since the 1980s.

For the full essay see:

Cassandra Quave. “Hunting for Medicines Hidden in Plants.” The Wall Street Journal (Saturday, November 20, 2021 [sic]): C4.

(Note: the online version of the essay has the same date and title as the print version.)

Quave’s essay is adapted from her book:

Quave, Cassandra Leah. The Plant Hunter: A Scientist’s Quest for Nature’s Next Medicines. New York: Viking, 2021.

The Noah Whiteman book I praise in my introductory comments is:

Whiteman, Noah. Most Delicious Poison: The Story of Nature’s Toxins―from Spices to Vices. New York: Little, Brown Spark, 2023.

Those Open to the Unexpected Can Benefit from Serendipity

Serendipitous discoveries often involve seeing something unexpected and imagining a use for it. I am currently reading Mary Makary’s Blind Spots. To explain the inertia of the medical establishment, he points out that seeing our expectations contradicted is painful for us; it causes what Leon Festinger called “cognitive dissonance.” Cognitive dissonance causes stress. Most of us minimize the stress by denying or papering over the experiences that contradict expectations. It takes effort, often painful effort, to keep the contradiction in mind. One of my heroes is Oswald Avery, who discovered that the genetic material is DNA. Before he focused on DNA, he worked hard to understand the behavior of the Pneumococcus bacteria that cause pneumonia. Then Fred Griffith showed that only encapsulated Pneumococcus bacteria could cause pneumonia since unencapsulated Pneumococcus can be eliminated by the immune system, and showed further that unencapsulated Pneumococcus could acquire capsules, and become infectious. This transformation of the Pneumococcus contradicted Avery’s expectations, likely causing the him the stress, and the Graves disease, that paralyzed his research for six months (Barry 2005, pp. 421-422). But Avery did not suppress the contradiction. Eventually he pivoted (or if it takes six months I should say ‘eventually he painfully changed direction’) to the research that led to DNA as the genetic material.

(p. A15) Horace Walpole, who coined the term “serendipity” in a 1754 letter, believed that “the best discoveries are made while one is searching for something else,” according to Mr. Pievani. But blind luck, although often important, is not sufficient in itself, as emphasized by Louis Pasteur when he observed that “chance favors the prepared mind.”

“Serendipity” provides a catalog of serendipitous discoveries.  . . .

Mr. Pievani offers a useful and informative survey but sometimes layers his material so elaborately as to be off-putting. Early on, for example, we learn that “in 1762, Venetian playwright Carlo Gozzi, the anti-Goldoni who in the same year published the Turandot, which would inspire Giacomo Puccini, brought to the theater a fairy tale, The Deer King, which in the midst of the rococo revived the novella by Khusrau and Armeno, in particular the theme of the transmigration of souls from human to animal.” Huh? Aside from showcasing Mr. Pievani’s extensive learning, such digressions mostly demonstrate his need for a ruthless editor.

“Serendipity,” translated from the Italian by Michael Gerard Kenyon, is most intriguing when it focuses on people with prepared minds who didn’t merely find something they weren’t looking for but were in fact searching for something else when they had a breakthrough.

. . .

In 1928 Fleming, a microbiologist, had been growing Staphylococcus aureus in petri dishes. One day, upon returning from vacation, he noticed that one of the cultures had been accidentally contaminated with a Penicillium mold, which had mysteriously killed the surrounding bacteria. As a military doctor in World War I, Fleming had seen many soldiers die of bacterial infections, and he surmised that maybe this mold would help cure comparable illness.

. . .

. . ., without a prepared mind à la Pasteur, many key discoveries would have been missed. Mr. Pievani makes clear that “if you do not have predictions and expectations in mind, you will never be able to see that an accidental observation is incongruent and therefore potentially a harbinger of serendipity.” The author seeks to encourage what he calls an “ecology of serendipity” that facilitates scientific discovery. He has some suggestions, notably that one should be a “xenophile: love all things strange, all things different, foreign and new, the exceptions, the deviations.”

For the full review see:

Barash, David P. “BOOKSHELF; Progress By Accident.” The Wall Street Journal (Tuesday, Dec. 17, 2024): A15.

(Note: ellipses added.)

(Note: the online version of the review has the date December 16, 2024, and has the title “BOOKSHELF; ‘Serendipity’: Progress by Accident.” In both versions of the article, the names of works of literature and species of bacteria or mold, are italicized.)

The book under review is:

Pievani, Telmo. Serendipity: The Unexpected in Science. Translated by Michael Gerard Kenyon. Cambridge, Mass.: The MIT Press, 2024.

The book by Barry that I reference in my initial comments is:

Barry, John M. The Great Influenza: The Story of the Deadliest Pandemic in History. Revised ed. New York: Penguin Books, 2005.

When a Therapy Fails in a Clinical Trial, Is That the Fault of the Therapy or of the Trial?

When a proposed therapy fails in a clinical trial is that because the therapy can’t work, or is it because the trial itself was flawed? It is far from written in stone how a clinical trial should be set up. Should the therapy be given by pill or intravenously? In what doses? How often, for how long? At what stage of the disease? Because Stage 3 clinical trials are so expensive and difficult to implement, some therapies may have only one shot to succeed. How many therapies that could have helped some people, will never do so, because the researchers had bad luck, or less skill, in implementing the trial? This problem could be reduced the regulatory mandate to requiring only the Stage 1 and Stage 2 clinical trials, that mainly establish safety (as opposed to the much-more-expensive Stage 3 that mainly establishes efficacy). That way researchers who lacked the deep pockets of the researchers discussed in the article quoted below, could still more often afford multiple shots at designing a trial that would succeed at identifying what therapy, applied to which patients, in what modalities, might cure them, or at least lengthen their lives, or reduce their symptoms. Some of the greatest advances in medicine occurred in an environment of quick trial and error, as when medicine has to be precticed on the battlefield of war, or when Emil Freireich improvised new ingredients for his chemo cocktail to cure some children of childhood leukemia or when Freireich’s protégé Vincent DaVita did the same to cure some adults of Hodgkin’s lymphoma. Ideally I would eliminate all mandates, both to enhance liberty, and to speed trial-and-error therapies. But here I suggest eliminating only Stage 3 clinical trials, not because I think that is ideal, but (following Milton Freidman) because I suspect that policy reform may be the best that is politically feasible. We would maximize trial and error adjustments by eliminating all mandated clinical trials. In the vast majority of decisions in life we make judgements without the benefit of a clinical trial. And such judgements usually are effective and improve with experience. [Gary Klein persuasively makes this point through a multitude of examples, in his tour de force Sources of Power.] What is done in life generally, can also be done in medicine in particular, bringing us more cures, faster.

(p. D4) “There is no reason why cancer vaccines would not work if given at the earliest stage,” said Sachet A. Shukla, who directs a cancer vaccine program at MD Anderson Cancer Center. “Cancer vaccines,” he added, “are an idea whose time has come.” (Dr. Shukla owns stock in companies developing cancer vaccines.)

That view is a far cry from where the field was a decade ago, when researchers had all but given up. Studies that would have seemed like a pipe dream are now underway.

“People would have said this is insane,” said Dr. Susan Domchek, the principal investigator of a breast cancer vaccine study at the University of Pennsylvania.

. . .

“We had this trial, 63 patients, Stage 4 cancer. They had failed all therapies,” Dr. Finn said.

. . .

In their initial studies, it became clear to Dr. Finn and her colleagues that the cancers were too far advanced for immunizations to work. After all, she notes, with the exception of rabies, no one vaccinates against an infectious disease in people who are already infected.

“I said, ‘I don’t want to do that again,’” Dr. Finn said. “It is not the vaccines. We have to look at different patients.”

Now, she and her colleague at Pittsburgh, Dr. Robert Schoen, a gastroenterologist, are trying to prevent precancerous colon polyps with a vaccine. But intercepting cancer can be tricky.

They focused on people whose colonoscopies had detected advanced polyps — lumps that can grow in the colon, but only a minority of which turn into cancer. The goal, Dr. Schoen said, was for the vaccine to stimulate the immune system to prevent new polyps.

It worked in mice.

“I said, ‘OK, this is great,’” Dr. Schoen recalled.

But a recently completed study of 102 people at six medical centers randomly assigned to receive the preventive vaccine or a placebo had a different result. All had advanced colon polyps, giving them three times the risk of developing cancer in the next 15 years compared to people with no polyps.

Only a quarter of those who got the vaccine developed an immune response, and there was no significant reduction in the rate of polyp recurrences in the vaccinated group.

“We need to work on getting a better vaccine,” Dr. Schoen said.

. . .

Dr. Domchek said she can envision a future in which people will have blood tests to find cancer cells so early that they do not show up in scans or standard tests.

“To paint a grand future,” she said, “if we knew the tests predicted cancer we could say, ‘Here’s your vaccine.’”

For the full story see:

Gina Kolata. “New Hopes for a Cancer Vaccine.” The New York Times (Tuesday, Oct. 11, 2022 [sic]): D4.

(Note: ellipses added.)

(Note: the online version of the story has the date Oct. 10, 2022 [sic], and has the title “After Giving Up on Cancer Vaccines, Doctors Start to Find Hope.” Where the wording of the versions differs, the passages quoted above follow the online version.)

Gary Klein’s main book that I praise in my initial comments is:

Klein, Gary A. Sources of Power: How People Make Decisions. 20th Anniversary ed. Cambridge, MA: The MIT Press, 2017.

Some Medical Researchers Seek Patient Input on Execution of Studies

In the story quoted below some medical researchers are seeking patient involvement in studies, but I was disappointed to realize that the involvement is mostly superficial with the aim of getting patient agreement to be part of the study. The researchers in the story still see a big divide between patients and doctors. Doctors see patterns and create hypotheses to be tested. Patients, if they want, can stand by posters, and make minor suggestions on the execution of study design.

I suggest, more ambitiously, that patients sometimes, if allowed, can see patterns and create hypotheses. They have the incentive, the skin in the game. And sometimes they have direct experience on what works and what does not work.

(p. R6) Joel Nowak, a 66-year-old Brooklyn, N.Y., resident with metastatic prostate cancer, knows a lot about cancer research. Over the years, he has contributed blood, saliva and medical information to studies in hopes of helping investigators battle the disease.

But something has nagged at him. Almost always, Mr. Nowak says, investigators want data, “but you never hear from them again.”

Then he was asked to join a new endeavor that is trying to change that—by making participants into partners.

The Metastatic Prostate Cancer Project, launched by the Broad Institute of MIT and Harvard and the Dana-Farber Cancer Institute in Boston, is trying to give participants a bigger stake in studies by asking them for input, inviting them to events and keeping them updated on progress.

. . .

Patients are . . . invited for a tour of the Broad Institute to see its gene-sequencing machines or to meet and share ideas with researchers, says Nikhil Wagle, director of the umbrella initiative.

Dr. Wagle thinks the approach has led to unusually fast and large enrollment. More than 4,000 people enrolled in the breast-cancer project and over 290 in the angiosarcoma initiative. In just a few weeks, more than 200 signed up for the prostate-cancer study.

. . .

Keeping participants up-to-date is another concern for researchers. It is an issue close to home for Corrie Painter, principal investigator of the angiosarcoma project at the Broad and one of the creators of all three of the institute’s cancer initiatives.

Dr. Painter draws on her experiences as a cancer survivor and research participant in shaping interactions with patients. She was diagnosed with angiosarcoma nearly eight years ago. Dr. Painter says that after her diagnosis, like many patients, she felt frustrated at being treated more “as passive recipients of care rather than part of the process of discovery.”

. . .

Meanwhile, some patients are taking the opportunity to play a larger role in shaping studies. Mr. Nowak, for one, joined a patient advisory council of the prostate-cancer project. Members communicate on videoconferences, email exchanges and in person. During a meeting at the Broad, researchers showed a prototype for the saliva kits that were going to be mailed to patients to collect samples.

The advocates told researchers to take “Metastatic Prostate Cancer Project” off the box. “There are a lot of men who don’t want other people to know they have cancer,” says Mr. Nowak.

For the full story see:

Amy Dockser Marcus. “Researchers Look to Enlist Patients as Partners.” The Wall Street Journal (Monday, Feb. 25, 2018 [sic]): R6.

(Note: ellipses added.)

(Note: the online version of the story has the date Feb. 25, 2018 [sic], and has the title “Medical Researchers Look to Enlist Patients as Partners.” The last two ellipses above indicate where I omit sentences that appeared in the longer online version, but not in the print version.)

Marcus’s story is related to her book:

Marcus, Amy Dockser. We the Scientists: How a Daring Team of Parents and Doctors Forged a New Path for Medicine. New York: Riverhead Books, 2023.

Large Medical Databases Would Allow Discovery and Testing of Causal Patterns of Diseases

After considerable effort, as of the writing of the article quoted below, Dr. Wagle has only been able to gather data on 375 of the roughly 155,000 metastatic breast cancer patients in the U.S. Many have long complained about the difficulty in obtaining and consolidating medical records. Exploring the reasons would take a longer article than the one quoted below. Part of the story is the Health Insurance Portability and Accountability Act of 1996 (HIPAA). It was passed to protect patient privacy, but it served as cover for medical institutions to stonewall patients, policy makers, and other medical institutions from obtaining information. The institutions make the process of obtaining medical information as slow, opaque, and onerous as possible. Partly this is a result of the general inefficiency of medical bureaucracy. Regulations limit competition among medical institutions and limit entrepreneurship, allowing inefficiencies to persist. To those who are mission-oriented within the bureaucracy, providing records may seem a lower priority than issues affecting current medical care. But also, restricting information may increase patient lock-in. Ceteris paribus, a patient may choose to stay at an institution that has long health records for the patient. Also, providing less information to third parties may make the institution less vulnerable to criticism and law suits.

Ideally, Dr. Wagle’s database would serve as a modern day version of the dusty hospital archives that Dr. William Coley pursued to find a pattern among the patients who had been spontaneously cured of their cancer in the late 1800s.

From personal experience I can say that getting patient information is easier now than it was 30 years ago, at least for the patient to obtain their own information.

An important side point is Dr. Wagle’s emphasis on the value of obtaining patient narratives, in addition to coded data. Narratives allow the discovery of additional causes or effects, beyond what the initial coders include in the coded data. Gary Klein makes this point in defending the value of what he calls “stories” (Klein 2017).

(p. D4) Dr. Nikhil Wagle thought he had a brilliant idea to advance research and patient care.

Dr. Wagle, an oncologist at the Dana Farber Cancer Institute in Boston, and his colleagues would build a huge database that linked cancer patients’ medical records, treatments and outcomes with their genetic backgrounds and the genetics of their tumors.

The database would also include patients’ own experiences. How ill did they feel with the treatments? What was their quality of life? The database would find patterns that would tell doctors what treatment was best for each patient and what patients might expect.

The holdup, he thought, would be finding patients. Instead, the real impediment turned out to be gathering their medical records.

. . .

Dr. Wagle is making data from medical records and patients’ experiences public as he gets them. After 2 1/2 years, though, he is disappointed by how little there is to share.

The patient who inspired his project had a lethal form of thyroid cancer. She was expected to die in a few months. In desperation, doctors gave her a drug that by all accounts should not have helped.

To everyone’s surprise, her tumors shrank to almost nothing, and she survived. She was an “extraordinary responder.”

Why? It turned out that her tumor had an unusual mutation that made it vulnerable to the drug.

And that got Dr. Wagle thinking. What if researchers had a database that would allow them to find these lucky patients, examine their tumors, and discover genetic mutations that predict which drugs will work?

. . .

Dr. Wagle decided to build a database, starting with metastatic breast cancer, his specialty. There are about 155,000 metastatic breast cancer patients in the United States. He would use social media, online forums and advocacy groups to reach out to patients for their records.

. . .

Startlingly, faxing “is the standard,” Ms. McGillicuddy said, for medical records requests.

The process can be frustrating. Fax numbers can be out of date. Some medical centers will not accept electronic patient signatures on the permission forms.

Sometimes, the medical centers just ignore the request — and the second request. In the end, Ms. McGillicuddy said, the project gets fewer than half the records it requests.

Then comes the laborious task of extracting medical information from the records and entering it into the database. A faxed medical record may be 100 or 200 pages long.

So far, the breast cancer project has received 450 records for 375 patients. (Each patient tends to have more than one record, because the women typically are seen at more than one medical center.)

For the full story see:

Gina Kolata. “Concealing New Cancer Treatments.” The New York Times (Tuesday, May 22, 2018 [sic]): D4.

(Note: ellipses added.)

(Note: the online version of the story has the date May 21, 2018 [sic], and has the title “New Cancer Treatments Lie Hidden Under Mountains of Paperwork.” Where the wording of the versions differs, the passages quoted above follow the online version.)

Gary Klein’s main book that I praise in my initial comments is:

Klein, Gary A. Sources of Power: How People Make Decisions. 20th Anniversary ed. Cambridge, MA: The MIT Press, 2017.

The Academic “Herd Mindset” May Be the Cause of What Elon Musk Calls the “Woke Mind Virus”

(p. B3) “I listen to podcasts about the fall of civilizations to go to sleep,” Musk said this past week during an appearance at the Milken Institute conference. “So perhaps that might be part of the problem.”

One provocateur, in particular, has caught his attention of late: Gad Saad, a marketing professor at Concordia University in Montreal, and author of the book “The Parasitic Mind: How Infectious Ideas Are Killing Common Sense.”

. . .

Saad wrote that “The Parasitic Mind” was inspired, in part, by his experience in academia, where he described a herd mindset that chastised innovative thinkers. He described pushback he encountered, including his ideas being labeled as “sexist nonsense” and his efforts to use “biologically-based theorizing” to explain consumer behavior being dismissed as too reductionistic.

“The West is currently suffering from such a devastating pandemic, a collective malady that destroys people’s capacity to think rationally,” the 59-year-old Saad wrote at the beginning of his book. “Unlike other pandemics where biological pathogens are to blame, the current culprit is composed of a collection of bad ideas, spawned on university campuses, that chip away at our edifices of reason, freedom, and individual dignity.”

. . .

Another inspiration for his book, Saad writes, was his experience as a boy fleeing with other Jews from his home in Lebanon during that country’s civil war. In the book, he detailed some of the horrors he experienced, including the kidnapping of his parents.

. . .

Musk has said his concerns about Woke Mind Virus, his way of labeling progressive liberal beliefs that he says are overly politically correct and stifling to public debate and free speech, helped fuel his desire to acquire the social-media company Twitter turned X in late 2022.

For the full commentary see:

Tim Higgins. “His Musings Fuel Musk’s Nightmares.” The Wall Street Journal (Monday, May 13, 2024): B3.

(Note: ellipses added.)

(Note: the online version of the commentary has the date May 11, 2024, and has the title “The Man Whose Musings Fuel Elon Musk’s Nightmares.” The last two ellipses above indicate where I omit sentences that appeared in the longer online version, but not in the print version.)

The Saad book that has influenced Elon Musk is:

Saad, Gad. Parasitic Mind: How Infectious Ideas Are Killing Common Sense. New York: Regnery Publishing, 2020.

The Patterns in Unexpected Cancer Cures Can Yield Actionable Insight

The method for fighting cancer discussed by Gina Kolata in the passages quoted below, is similar to the method that led William Coley to first develop immunotherapy in the late 1800s. Coley searched the archives of his hospital, seeking any cases in which cancer seemed to have been spontaneously cured. When he had a few cases he looked for a common feature that might explain the cures. He found that in each case the patient had a severe viral or bacterial infection. When the patient’s immune system cured them of the infection, it also, as a desirable side-effect, cured them of the cancer. In the case of the rare ovarian discussed below, Dr. Levine hypothesizes that the common feature of the rare single-mutation cancers that can be cured by immunotherapy drugs, is that there is a mutated master gene that turns on and off other genes–creating an abnormal variation that somehow alerts the immune system of the presence of tumor cells that should be attacked. (The article quoted below is now over six years old–I wonder if in those six years Dr. Levine has found evidence to support, modify, or reject his hypothesis?) [My memory is foggy on this, but I think Steven Rosenberg may also have applied a similar method after he encountered a case of spontaneous cancer cure when he was working in a veteran’s hospital early in his career–see Rosenberg and Barry, 1992.]

Notice that the four patients only were cured because they had the courage and boldness to ask their oncologist to try a therapy that the standard protocol said would fail. And notice that the four patients only were cured because they had oncologists who had the courage and boldness to violate accepted protocols. Or maybe something besides courage and boldness explains the oncologists’ actions. Maybe the oncologists were practicing medicine in countries were hospitals, regulatory agencies, and health insurance companies did not exert as much pressure to follow the protocol as is exerted in the United States? (I wonder if there is enough information publicly available to check this possibility.)

Notice that instead of searching a dusty archive, Levine joined a patient ovarian cancer Yahoo discussion group. Patients were trying to be in control of their cancers, and unlike some doctors, Levine had the humility to think he could learn from what these activist patients reported. Citizen science is a resource to be used, not a distraction to be tamped down or ridiculed. [Amy Dockser Marcus defends citizen science, and gives an extended example, in her We the Scientists.]

Finally note that the method pursued by Coley and Levine can yield genuine actionable knowledge. Randomized double-blind clinical trials are not the only sources of knowledge.

Gina Kolata has written many thought-provoking articles. I hope to follow-up on this one sometime.

(p. D1) No one expected the four young women to live much longer. They had an extremely rare, aggressive, and fatal form of ovarian cancer. There was no standard treatment.

The women, strangers to one another living in different countries, asked their doctors to try new immunotherapy drugs that had revolutionized treatment of cancer. At first, they were told the drugs were out of the question — they would not work against ovarian cancer.

Now it looks as if the doctors were wrong. The women managed to get immunotherapy, and their cancers went into remission. They returned to work; their lives returned to normalcy.

. . .

“We need to study the people who have a biology that goes against the conventional generalizations.”

Four women hardly constitutes a clinical trial. Still, “it is the exceptions that give you the best insights,” said Dr. Drew Pardoll, who directs the Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins Medicine in Baltimore.

The cancer that struck the young women was hypercalcemic small cell ovarian cancer, which typically occurs in a woman’s teens or 20s. It is so rare that most oncologists never see a single patient with it.

. . .

(p. D3) Women with this form of ovarian cancer were sharing news and tips online in a closed Yahoo group. Dr. Levine asked to become part of the group and began joining the discussions. There he discovered patients who had persuaded doctors to give them an immunotherapy drug, even though there was no reason to think it would work.

The women reported that their tumors shrank immediately.

. . .

Lung cancer, a genetic type of colorectal cancer and melanoma have huge numbers of mutations, and immunotherapy drugs often are successful in treating them. Cancers of the prostate, pancreas, breast, ovaries — and most other tumors — carry few mutations.

“These are the cancers that rarely respond,” Dr. Pardoll said.

The idea that the drugs might work against something like hypercalcemic ovarian cancer, which is fueled by just one genetic mutation, just made no sense.

“For the vast majority of cancers, there is an amazingly clean correlation between response to therapy and mean mutational load,” Dr. Pardoll said.

. . .

And then came a handful of women with a rare ovarian cancer. Oriana Sousa, 28, a psychologist in Marinha Grande, Portugal, was one of them.

She found out she had cancer in December 2011.

. . .

For the next four years, Ms. Sousa’s doctors tried to control the cancer, giving her rounds of chemotherapy, radiotherapy and surgery. But every time, new tumors emerged.

. . .

Things are different now. In 2015, she finally persuaded a doctor to give her an immunotherapy drug, nivolumab. Immediately, her tumors shrank and continued shrinking as she continued with the drug — so much that her doctors now say she has no evidence of disease. Life has returned to normal.

. . .

What saved her? Dr. Eliezer M. Van Allen, a cancer researcher at Dana-Farber Cancer Institute, has come across one clue.

He found that a gene mutated in kidney cancer was sort of a master regulator of other genes, controlling which were turned on and when. But the regulated genes were normal and did not produce proteins that the immune system might recognize as abnormal.

Nonetheless, patients responding to immunotherapy were the ones with the master gene mutation. “We saw this result and weren’t sure what to make of it,” he said.

Dr. Levine and his colleagues found the same phenomenon in patients with hypercalcemic ovarian cancers. One explanation, he and Dr. Van Allen said, is that the immune system may recognize that cells in which genes are erratically turning on and off are dangerous and should be destroyed.

“That is strictly hypothesis,” Dr. Levine cautioned.

For the full story see:

Gina Kolata. “Cured Unexpectedly.” The New York Times (Tuesday, February 20, 2018 [sic]): D1 & D3.

(Note: ellipses added.)

(Note: the online version of the story has the date Feb. 19, 2018 [sic], and has the title “Doctors Said Immunotherapy Would Not Cure Her Cancer. They Were Wrong.”)

The academic article co-authored by Dr. Levine that reports on the remission of a rare ovarian cancer in four women is:

Jelinic, Petar, Jacob Ricca, Elke Van Oudenhove, Narciso Olvera, Taha Merghoub, Douglas A. Levine, and Dmitriy Zamarin. “Immune-Active Microenvironment in Small Cell Carcinoma of the Ovary, Hypercalcemic Type: Rationale for Immune Checkpoint Blockade.” Journal of the National Cancer Institute 110, no. 7 (2018): 787-90.

The book by Marcus that I praise above is:

Marcus, Amy Dockser. We the Scientists: How a Daring Team of Parents and Doctors Forged a New Path for Medicine. New York: Riverhead Books, 2023.

Rosenberg’s encounter with a case of spontaneous cancer cure, that I mention above, can be found somewhere early in:

Rosenberg, Steven A., and John M. Barry. The Transformed Cell: Unlocking the Mysteries of Cancer. New York: G.P. Putnam’s Sons, 1992.

Government Gave “40 Years of Seriously Incorrect Advice” on Trans Fats

The government’s advice often turns out to be wrong. That is an added argument for not giving the government the power to enforce its advice through mandatory regulations. (“Added” to the fundamental argument based the right to free choice.)

[In May 2021 Nicholas Wade, the author of the review quoted below, showed enormous courage in being one of the first few to risk cancelation by presenting a cogent case that Covid leaked from a Wuhan lab.]

(p. C9) Rachel Carson rightly complained in “Silent Spring” that farmers were sloshing far too many harmful pesticides into the environment. But she took aim at the wrong one. DDT, a mild and enormously effective pesticide, helped rid the United States of malaria and its benefits, if more discriminately pursued, could have outweighed its costs.

The overstrict verdict against DDT is an instance of the harms that can ensue when scientific evidence is ignored. This and other cases described by Paul A. Offit in “Pandora’s Lab: Seven Stories of Science Gone Wrong” raise provocative questions about the reasons that science is misused in modern society.

. . .

Another case of medical advice based on insufficient data is that of dietary fat. As Dr. Offit tells the story, in the 1970s the government advised cutting down on fat consumption. In the 1980s the message changed. Unsaturated fats were good; only saturated fats were bad: Eat margarine, not butter. But then it turned out that unsaturated fats came in two forms, known to chemists as “cis” and “trans,” and that “trans fats” were appallingly active promoters of heart disease. Margarine and hydrogenated vegetable cooking oils, whose use had been encouraged, were rich in trans fats. After 40 years of seriously incorrect advice, trans fats were mostly eliminated from the American diet only in 2012.

. . .

Besides his overconfidence in the checking mechanisms of science, Dr. Offit goes too easy on the motives of those who abuse science. Environmentalists, for instance, are interested in achieving political results, not in distracting scientific caveats and uncertainties, which they do their best to suppress. It is their propensity to take everything to excess that leads to obscurantist positions, such as irrational fear of genetically modified crops.

For the full review see:

Nicholas Wade. “A Little Knowledge.” The Wall Street Journal (Saturday, April 8, 2017 [sic]): C9.

(Note: ellipses added.)

(Note: the online version of the review was updated April 7, 2017 [sic], and has the same title as the print version.)

The book under review is:

Offit, Paul A. Pandora’s Lab: Seven Stories of Science Gone Wrong. Washington, D.C.: National Geographic, 2017.