Allow Those with Skin in the Game to Help Find Quicker Cures

The New York Times devoted more than two and half full pages to the article that I quote from below. Very very few articles receive that much space. The story is meant to inspire and it does. Linde has a terrible genetic disease, as did her mother and grandmother, as do her two sisters, and as might her two daughters. She is uncredentialled, but determined. She reads scientific articles, gives talks at scientific meetings, creates a foundation to raise funds, and with her sisters gave samples from her skin to create cell lines that can be used for research to find a cure. Linde, both literally and figuratively, has skin in the game.

In the article, victims of the disease wish that there were more clinical trials to test more possible cures. If the price of clinical trials were lower, more of them would be supplied. One way to reduce the price would be for the F.D.A. to only mandate testing for safety, not to mandate testing for efficacy. After all, it was concerns over the safety, not the efficacy, of thalidomide, that first accelerated the F.D.A.’s clinical trial mandates. Testing only for safety (Phase 1 and Phase 2 clinical trials), would hugely reduce the price, resulting ultimately in more and quicker cures.

(p. A1) Linde Jacobs paced back and forth across her bedroom, eyeing the open laptop on the dresser and willing the doctor to appear. Her husband was dropping off their older daughter at school. Their younger daughter was downstairs, occupied by a screen. Linde wanted to be alone when she learned whether she carried the family curse.

Linde’s mother, Allison, had died just four weeks before, after a mutant gene gradually laid waste to her brain. In her 50s, Allison transformed from a joyful family ringleader into an impulsive, deceptive pariah. She drove like a maniac on cul-de-sacs. She pinched strangers, shoplifted craft supplies and stole money from her daughter.

Now, on this morning in September 2021, Linde would find out if she had inherited the same vile genetic mutation.

. . .

The doctor finally popped up on the computer. Wasting no time on pleasantries, she shared her screen and zoomed in on one line of laboratory paperwork: POSITIVE.

. . .

Soon, Linde’s husband, Taylor, pulled into the garage and opened the car door. He could hear her sobbing.

. . .

Linde looked at Taylor. “I don’t want you to feel stuck with me,” she said.

(p. A12) Leaving had never crossed his mind. Allison’s miserable experience, he told Linde, did not have to be hers. “You have all this time,” he said. “Do something about it.”

Even as they spoke, scientists were working on projects that might one day help her. Some had discovered how to cure grave conditions with gene editing. Others were tinkering with patients’ skin cells to test experimental drugs. And pharmaceutical companies were developing new Alzheimer’s therapies, one of which happened to target the rare defect in Linde’s brain.

Linde didn’t know any of that yet. But she decided to take Taylor’s advice. She would use the time she had, somehow, to find influential scientists and make them care about what was happening to her — and what might happen to her girls.

Linde and Taylor scoured the internet for any scrap of hope about treating frontotemporal dementia, or FTD. There was little to read.

Taylor remembered a Netflix documentary about a new way to edit genes. The method, called CRISPR, had cured some children with sickle cell disease. He searched “FTD treatment CRISPR” and found the website of Dr. Claire Clelland, a neurologist at the University of California, San Francisco. She had collected skin cells from patients with FTD, reprogrammed them into neurons and tried to edit the faulty genetic code within.

The website listed a phone number. Taylor called and left a message — a Hail Mary, he figured.

Within a day, Dr. Clelland responded by email. “Happy to help if I can,” she wrote.

. . .

(p. A13) “Could I ask a question?” one young scientist said. How much risk, she wondered, was Linde comfortable taking on an experimental treatment? Editing genes with CRISPR was new, after all, and could come with serious side effects.

“Sign me up, patient zero, sounds good,” Linde said.

“What choice do I have,” she added, “if I don’t want the same future for myself as my mom had, and her mom?”

When she wasn’t working or coaching her daughter’s soccer team, Linde threw herself into the scientific research on MAPT — a niche but growing subfield. The gene provides the instructions for cells to make tau, a protein in the brain.

One day she came across news of a project investigating how tau can go awry. She wrote to the scientist leading the work, Dr. Kenneth Kosik of the University of California, Santa Barbara, describing her family and asking to talk.

Dr. Kosik was sitting in his home office when her note landed in his inbox. “It was the second time in my life that I realized, I’ve got to get back to this person in, like, a nanosecond,” he recalled.

. . .

Dr. Kosik told Linde that an elite group of researchers, known as the Tau Consortium, would gather in Boston in a few months for its annual meeting. Dr. Clelland would be there, as would other “Michael Jordans” in the field. We should try to get you there, he said, so the scientists can be reminded of the human toll of tau-related diseases.

A few weeks later, Linde received an invitation to be the keynote speaker. Jenica and Ashlyn could come, too.

She texted her sisters, “Holy shit.”

One morning in Boston in June 2023, Linde and her sisters got all dolled up, only to arrive in a grand hotel ballroom filled with 100 scientists in oxfords and sneakers.

Dr. Kosik introduced Linde to the members of the Tau Consortium. Too nervous to look anyone in the eye, she stared at a screen showing her slides and read from her prepared remarks.

“You will notice the lack of credentials following my name,” she began. But she said her life had brought her other titles: Caregiver. Jail-Bailer. Carrier. She was the heartbeat, she said, of the cells they studied.

. . .

After the Boston talk, Linde received a flurry of invitations to tell her story. She was interviewed on YouTube by Emma Heming Willis, the wife of the actor Bruce Willis, the most famous person known to have frontotemporal dementia. She came face to face with monkeys that carried MAPT mutations in Madison, Wis. And though she detested the crowds and grime of big cities, she flew to places like Philadelphia and Washington, D.C., to at-(p. A14)tend scientific meetings.

Linde, who by then had moved to River Falls, Wis., always returned home exhausted. But the trips were also fortifying. Learning about the latest research quelled her anxiety — and her husband’s.  . . .

During her travels, Linde met other families with MAPT mutations. They were all frustrated by the lack of clinical trials for their genetic glitch, especially because several promising treatments were in the pipeline for other dementia genes. Linde and the others started a global survey of people with MAPT mutations. If an opportunity came along for a clinical trial, they would make it as easy as possible for scientists to find volunteers.

. . .

A few months later, Linde and the group started a nonprofit, called Cure MAPT FTD. They have since found more than 500 people with confirmed or possible MAPT mutations in 10 countries, all of whom have expressed interest in participating in future clinical trials.

In March of this year, Linde got an astonishing offer from Dr. Clelland. Along with collaborators at Washington University and the Neural Stem Cell Institute in New York, she wanted to collect skin cells from Linde and her sisters and turn them into clusters that divide infinitely, known as cell “lines.”

“We propose to make new lines that can be shared with academics and also with industry so that people can do drug screening” and CRISPR projects, Dr. Clelland wrote.

. . .

Based on what happened to Allison and Bev, Linde figures she has at least 10 more years before she starts showing symptoms. But there’s no guarantee; some MAPT carriers begin to change in their 20s. Whenever Linde tells a joke a little too loudly, or has a dulled emotional response to a dramatic event, she worries: Is this tau?

That anxious metronome never shuts off. It compels her to fill any moment of downtime reading the latest study or sending another email. She has spent thousands of dollars and hundreds of unpaid hours on travel. But sometimes, like when she finds herself alone in a hotel room, FaceTiming her daughter about a rough day at school, she questions whether these scientific pursuits are really the best way to run out the clock.

. . .

Dr. Clelland said designing a CRISPR molecule that could precisely excise the MAPT mutation from a cell’s genome was not the hard part. The major unsolved challenge is delivering those molecular scissors into the brain. Still, she and her colleagues at U.C.S.F. have set an ambitious goal of getting MAPT therapy into clinical trials within four years.

For the full story see:

Virginia Hughes. “A Mother’s Race to Beat a Genetic Time Bomb.” The New York Times (Wednesday, December 25, 2024): A1 & A12-A14.

(Note: ellipses added.)

(Note: the online version of the story was updated Jan. 2, 2025, and has the title “Fighting to Avoid Her Mother’s Fate, for Her Daughters’ Sake.” I have omitted a few subhead titles that appear in both the online and print versions.)

At Age 84 Scolnick Has the Passion to Persevere at Curing His Son’s Illness

Many of those with the passion to persevere in overcoming the necessary and unnecessary (regulatory) obstacles to medical innovation, do so because they have a sense of urgency due to skin in the game–they or a relative is directly affected by the disease they are passionate to cure. Dr. Edward Scolnick whose story I quote below, is a great example. In the story, we find another example, Ted Stanley, who donated $100 million to Scolnick because Stanley’s son is also suffering mental illness. And perhaps an indirect example? Rienhoff does not directly have skin in the game, but he is playing a key role because of Scolnick’s passion, and Scolnick’s passion is due to his skin in the game.

If we want more cures we will reduce the unnecessary (regulatory) obstacles so that those with less skin in the game (and so less passion to persevere) will also innovate.

[“Skin in the game” has been emphasized by Taleb in his book with that title.]

(p. A1) Dr. Edward Scolnick figures he needs five, maybe 10 more years to solve one of the brain’s greatest mysteries.

Scolnick, 84 years old, has spent most of the past two decades working to understand and find better ways to treat schizophrenia and bipolar disorder, mental illnesses suffered by tens of millions of people, including his son.

“I know I can crack it,” said Scolnick, a noted drug developer who spent his career plumbing the building blocks of DNA for new treatments.

Long before his latest quest, Scolnick spent 22 years at Merck, mostly as head of the drug giant’s laboratory research. He led development of more than two dozen medicines, including the first approved statin to lower cholesterol, an osteoporosis treatment and an anti-HIV therapy.

. . .

(p. A9) In 2021, Scolnick learned that a group of scientists analyzing DNA from thousands of people with schizophrenia had found mutations in 10 genes that substantially increased the risk of developing the illness. They estimated that a mutation on a single gene, called Setd1a, raised the risk 20-fold.

“It got my blood boiling,” Scolnick said. He began pursuing an emerging class of treatments called LSD1 inhibitors, hoping to develop a new drug. Scolnick enlisted Dr. Hugh Young Rienhoff Jr., who recently developed an LSD1 inhibitor to treat blood disorders.

. . .

Rienhoff anticipates testing a new drug for safety as early as next year, first in animals. He said he saw Scolnick’s passion about fielding a breakthrough treatment but didn’t fully understand why until Scolnick shared about his son’s lifelong struggles with mental illness.

Jason Scolnick, 54, said his doctor has been regularly fine-tuning his medications for bipolar disorder over the years to minimize their debilitating side effects. Using the drugs currently prescribed for schizophrenia or bipolar disorder is like undergoing chemotherapy, he said. “There’s no guarantee it will work and it makes you feel terrible, but the cancer will feel worse or kill you.”

There remains a long road ahead for any new medicine. It takes more than a decade, on average, to get a drug from the research lab through government approvals to patients.

. . .

After leaving Merck, Scolnick was hired in 2004 by the Broad Institute of MIT and Harvard to lead research on psychiatric disorders. He fostered ties with Ted Stanley, a memorabilia entrepreneur whose son also suffered with mental illness. In 2007, Stanley gave $100 million to launch the Stanley Center for Psychiatric Research at the Broad, headed by Scolnick for five years.

. . .

Scolnick and Rienhoff had sat together at a Blackstone dinner years earlier. During the meal, Scolnick shared stories with his table companions about Merck’s development of Crixivan, the anti-HIV drug. “I was hearing a piece of history,” Rienhoff said, “not just HIV history.”

Scolnick became emotional describing how the drug developers, facing various obstacles, wrestled with whether or not to keep going. He pushed for the study to continue, given the urgency. At the time, AIDS was killing tens of thousands of people a year in the U.S.

“I said to Ed, ‘You are thinking like a doctor not a scientist,’” Rienhoff said. “That was the beginning of our relationship.”

. . .

Rienhoff has a team of chemists making and testing compounds at labs in the U.S. and abroad.

“I am optimistic something will come of this,” Rienhoff said. “I can do it, but I wouldn’t have done it if not for Ed. I am, really, doing this in a way for Ed.”

. . .

Biotech company Oryzon Genomics in Spain is developing LSD1 inhibitors for cancer and other conditions. Columbia University researchers tried Oryzon’s drug in mice and found it reversed cognitive impairments caused by the Setd1a genetic mutation connected to schizophrenia. Oryzon is running a small trial in Spain of the LSD1 inhibitor in patients with schizophrenia.

Dr. Joseph Gogos, who led the Columbia research, said it was possible such treatments would be approved for people.

Scolnick is more certain—of both a revolutionary new treatment and his living to witness it.

“Before I die, we will see new medicines, new diagnostics, better outcomes for patients burdened by schizophrenia or bipolar illness,” he said. “I will not be happy to die. But I will die happy that my life helped.”

For the full story see:

Amy Dockser Marcus. “Aging Scientist Races Against Time.” The Wall Street Journal (Friday, Nov. 29, 2024): A1 & A9.

(Note: ellipses added.)

(Note: the online version of the story has the date November 26, 2024, and has the title “A Scientist’s Final Quest Is to Find New Schizophrenia Drugs. Will He Live to See Them?”)

L.E.D. Pioneer Akasaki’s “Perseverance — Sheer Doggedness — Paid Off”

(p. B10) Isamu Akasaki, a Japanese physicist who helped develop blue light-emitting diodes, a breakthrough in the development of LEDs that earned him a Nobel Prize and transformed the way the world is illuminated, died on Thursday [April 1, 2021] in a hospital in Nagoya, Japan. He was 92.

. . .

Bob Johnstone, a technology journalist and the author of “L.E.D.: A History of the Future of Lighting” (2017), said in an email, “The prevailing opinion in the late 1980s was that, because of the number of flaws in the crystal structure of gallium nitride, it would never be possible to make light-emitting diodes from it, so why would you even try?”

Dr. Akasaki, he continued, “was willing to stick at what was almost universally recognized to be a lost cause, working away long after researchers at RCA and other U.S. pioneers of gallium nitride LED technology had given up.”

“Eventually,” Mr. Johnstone said, “his perseverance — sheer doggedness — paid off.”

. . .

Dr. Akasaki was awarded hundreds of patents for his research over the years, and the royalties from his groundbreaking work with Dr. Amano eventually funded the building of a new research institute, the Nagoya University Akasaki Institute, completed in 2006.

. . .

When asked in a 2016 interview with the Electrochemical Society to summarize the philosophy guiding his many years of single-minded research, Dr. Akasaki replied, “No pain, no gain.”

“I say this to younger people: Experience is the best teacher,” he continued. “That is, sometimes there is no royal road to learning.”

For the full obituary see:

Scott Veale. “Isamu Akasaki, 92, Nobel Laureate Whose LED Breakthrough Rippled Around the World.” The New York Times (Wednesday, April 7, 2021 [sic]): B10.

(Note: ellipses, and bracketed date, added.)

(Note: the online version of the obituary has the date April 6, 2021 [sic], and has the title “Isamu Akasaki, 92, Dies; Nobel Winner Lit Up the World With LEDs.”)

The book by Bob Johnstone mentioned above is:

Johnstone, Bob. L.E.D.: A History of the Future of Lighting. Scotts Valley, CA: CreateSpace Independent Publishing Platform, 2017.

Keep Raging at “the Dying of the Light”

I still remember as an undergraduate at Wabash College reading in our intro psychology textbook of an experiment in which a dog was put in a box. Every time the dog tried to leap out of the box, he received an electric shock. Eventually the electric current was turned off. But the dog never again tried to leap. Are we like the dog, too discouraged by past constraints, so that we are resigned to accept the Biblical limit of “three score and 10” (Psalm 90:10)?

But there is a paradox. Kloc cites an article claiming a very high market value for expanded lifespans. But then where are the voters urgently demanding that medical entrepreneurs be unbound? Where are the citizens demanding that regulators stop mandating Phase 3 clinical trials? Citizens with a sense of urgency can make a difference–see the Act-Up movement in the early years of AIDs. When will they?

(p. 1) The longevity industry is coming off perhaps its best run on record. The expected span of an American life has increased by about three decades since 1900 — to around 78 as of 2023. But for many people, even 78 years just won’t do.

The Methuselah Foundation, a biomedical charity, for example, wants to “make 90 the new 50,” and scientists at one biotechnology firm have argued that, unencumbered by disease, the body could potentially make it all the way to age 150. Even more optimistic estimates put the number closer to 1,000.

​​Whatever the maximum human life span may be, people appear increasingly determined to find it — in particular men, who are more inclined to favor radically extending life, maybe even indefinitely. Last year, nearly 6,000 studies of longevity made their way onto PubMed, a database of biomedical and life sciences papers; that’s almost five times as many as two decades ago.

Along with the creation of dozens of popular podcasts and a sizable supplement industry, that zeal has led to efforts to preserve organs, search out life-extending diets and even try to reverse aging itself.

. . .

(p. 24) Researchers at Harvard and Oxford recently tried to gauge that interest in the marketplace today. They estimated that the total value of any scientific breakthrough that added another decade to global life expectancy would be worth $367 trillion.

For the full story see:

Joe Kloc. “Gilgamesh, Ponce and the Quest to Live Forever.” The New York Times, First Section (Sunday, January 19, 2025): 1 & 24.

(Note: ellipsis added.)

(Note: the online version of the story has the date Jan. 18, 2025, and has the title “The Centuries-Old, Incredibly Male Quest to Live Forever.”)

When Kloc mentions estimates of possible human lifespan “closer to 1,000” he links to a Scientific American interview with João Pedro de Magalhães, professor of biogerontology at England’s University of Birmingham. João Pedro de Magalhães believes that in principle humans could live to 1,000:

Gifford, Bill. “How Old Can Humans Get?” Scientific American (July 31, 2023). Available from https://www.scientificamerican.com/article/how-old-can-humans-get/.

When Kloc says that some “even try to reverse aging itself” he links to:

Poganik, Jesse R., Bohan Zhang, Gurpreet S. Baht, Alexander Tyshkovskiy, Amy Deik, Csaba Kerepesi, Sun Hee Yim, Ake T. Lu, Amin Haghani, Tong Gong, Anna M. Hedman, Ellika Andolf, Göran Pershagen, Catarina Almqvist, Clary B. Clish, Steve Horvath, James P. White, and Vadim N. Gladyshev. “Biological Age Is Increased by Stress and Restored Upon Recovery.” Cell Metabolism 35, no. 5 (2023): 807-20.

Kloc also links to estimates of the economic value of extending lifespans by one year, and by a decade, as given in:

Scott, Andrew J., Martin Ellison, and David A. Sinclair. “The Economic Value of Targeting Aging.” Nature Aging 1, no. 7 (July 2021): 616-23.

“Rage, rage against the dying of the light” is a line from Dylan Thomas’s poem “Do Not Go Gentle Into That Good Night.”

For Quicker Cures, Do Not Cancel Those Who See What We Do Not See

Dogs smell odors that we do not smell. They say Eskimos can distinguish 40 or more kinds of snow. Physical differences in biology and differences in past experiences allow some people to perceive what other people miss. We should encourage, not cancel, those who see differently. They can communicate and act on what they see, giving us more cures more quickly.

In the passages quoted below, a case is made that Pasteur’s artistic experiences allowed him to see a structural difference (chirality) in crystals; a difference that turns out to matter for medical drug molecules.

(p. D5) In a paper published last month in Nature Chemistry, Dr. Gal explains how a young Pasteur fought against the odds to articulate the existence of chirality, or the way that some molecules exist in mirror-image forms capable of producing very different effects. Today we see chirality’s effects in light, in chemistry and in the body — even in the drugs we take.

And we might not know a thing about them if it weren’t for the little-known artistic experience of Louis Pasteur, says Dr. Gal.

. . .

As a teenager, Pasteur made portraits of his friends, family and dignitaries. But after his father urged him to pursue a more serious profession — one that would feed him — he became a scientist. At the age of 24 he discovered chirality.

To understand chirality, consider two objects held up before a mirror: a white cue ball from a pool table and your hand. The reflection of the ball is exactly like the original. If you could reach into that mirror, pull out the reflection and cram it inside the original, they’d match up point for point. But if you tried the same thing with your hand, no matter how much you tried, the mirror image would never fit into the original.

At the molecular level some objects are like cue balls, and they are always superimposable. But other things are like hands, and they can never be combined.

. . .

During winemaking, a chemical called tartaric acid builds up on vat walls. In the 18th and 19th centuries, makers of medicine and dyes used this acid.

In 1819, factory workers boiled wine too long and accidentally produced paratartaric acid, which had unique properties that intrigued scientists like Pasteur.

. . .

When studying the paratartaric acid, Pasteur found that it produced two kinds of crystals — one like those found in tartaric acid and another that was the mirror opposite. The crystals were handed, or what the Greeks call chiral (kheir) for hand.

. . .

“Several famous or much more accomplished scientists, some well along their illustrious careers, studied the same molecules, the same substances,” said Dr. Gal. “Realistically you would think they’d have beaten him to the punch, and yet they missed it.”

So why did this young, inexperienced chemist get it right?

Dr. Gal thinks the answer might lie in the artistic passions of Pasteur’s youth. Even as a scientist, Pasteur remained closely connected to art. He taught classes on how chemistry could be used in fine art and attended salons. He even carried around a notebook, jotting down 1-4 ratings of artwork he visited.

And then Dr. Gal stumbled upon a letter Pasteur had written to his parents about a lithographic portrait he had made of a friend.

Lithography back then involved etching a drawing onto a limestone slab with wax or oil and acid, and pressing a white piece of paper on top of it. The resulting picture was transposed, like a mirror image of the drawing left on the slab.

In his letter, Pasteur wrote:

“I think I have not previously produced anything as well drawn and having as good a resemblance. All who have seen it find it striking. But I greatly fear one thing, that is, that on the paper the portrait will not be as good as on the stone; this is what always happens.”

Eureka. “Isn’t this the explanation of how he saw the handedness on the crystals — because he was sensitized to that as an artist?” Dr. Gal proposed.

. . .

We now know that many drugs contain molecules that exist in two chiral forms, and that the two forms can react differently in the body. The most tragic example occurred in the 1950s and ’60s, when doctors prescribed Thalidomide, a drug for morning sickness and other ailments, to pregnant women. The drug also contained a chiral molecule that caused disastrous side effects in many babies.

For the full story see:

Joanna Klein. “How Pasteur’s Artistic Insight Changed Chemistry.” The New York Times (Tuesday, June 20, 2017 [sic]): D5.

(Note: ellipses added.)

(Note: the online version of the story has the date June 14, 2017 [sic], and has the same title as the print version.)

The academic article in Nature Chemistry authored by Gal and mentioned above is:

Gal, Joseph. “Pasteur and the Art of Chirality.” Nature Chemistry 9, no. 7 (2017): 604-05.

See also:

Vantomme, Ghislaine, and Jeanne Crassous. “Pasteur and Chirality: A Story of How Serendipity Favors the Prepared Minds.” Chirality 33, no. 10 (2021): 597-601.

Reductio ad Absurdum: When a Functional MRI Showed Activity in a Dead Salmon’s Brain

I have long thought that most college students would benefit from a course in practical reasoning. One topic in such a course would be to define and illustrate the Reductio ad Absurdum argument. The argument starts with a proposition, and then infers an absurdity from the proposition, thereby refuting the original proposition. The review quoted below mentions such an argument that implicitly starts with the proposition that fMRI scans are reliable guides to human thought. The absurdity is that fMRI scans sometimes light up in the presence of a dead Atlantic salmon, which would seem to suggest that the salmon is thinking. The conclusion: be careful what you infer from fMRI scans.

My favorite reductio ad absurdum argument starts with the proposition that all actionable knowledge must derive from randomized double-blind clinical trials (RCTs). The argument then shows that no RCTs have been performed to show the efficacy of parachutes. The absurdity is that before anyone uses a parachute when exiting a flying airplane, he must first find an RCT to prove the efficacy of parachutes. The conclusion: when you volunteer for the first such RCT, hope that you are not assigned to the control group!

(p. A15) In 2009 a group of researchers placed a dead salmon in a functional magnetic resonance imaging (fMRI) scanner and showed the fish some photos of people in social situations. Their results, presented under the title “Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon,” were surprising. The scans revealed a red spot of activity centered in the salmon’s brain.

The authors of the study weren’t trying to pull a fast one on the scientific community. Nor did they believe in zombie fish. They were showing that statistics, used incorrectly, can demonstrate almost anything. Specifically, a certain type of data analysis, often used on fMRI scans, can find signal where there should be only noise.

Russell Poldrack, a psychologist at Stanford University, mentions the stunt in “The New Mind Readers: What Neuroimaging Can and Cannot Reveal About Our Thoughts.” His book, ostensibly about fMRI and its use in studying how the brain functions (hence “functional”), serves as a lesson in how the science works—or should work. Through blunders and baloney, innovation and self-correction, the young field of cognitive neuroscience is quickly evolving.

For the full review see:

Matthew Hutson. “Bookshelf; Scanning For Thoughts.” The Wall Street Journal (Wednesday, November 28, 2018 [sic]): A15.

(Note: the online version of the review has the date November 27, 2018 [sic], and has the title “Bookshelf; ‘The New Mind Readers’ Review: Scanning for Thoughts.”)

The book under review is:

Poldrack, Russell. The New Mind Readers: What Neuroimaging Can and Cannot Reveal About Our Thoughts. Princeton, NJ: Princeton University Press, 2018.

The parachute reductio argument is in:

Smith, Gordon C. S., and Jill P. Pell. “Parachute Use to Prevent Death and Major Trauma Related to Gravitational Challenge: Systematic Review of Randomised Controlled Trials.” BMJ 327, no. 7429 (Dec. 18, 2003): 1459-61.

The Lovable, Frustrating, Vulnerable “Big Easy”

Our daughter is a loyal Notre Dame graduate, so we went to New Orleans for the Sugar Bowl game, scheduled for January 1, but ultimately played on January 2. The day before the scheduled game, we were in Jackson Square on New Year’s Eve for the countdown to 2025. For us a little partying goes a long way, so we headed back to the Marriott about 12:30. About two and a half hours later, a couple of blocks from where we had been, the terrorist plowed his truck through the crowd, killing 14, and seriously injuring many more.

They call New Orleans “the Big Easy.” I appreciate its joy, its spontaneity, its libertarian tolerance. But I can only visit New Orleans, I cannot live there.

When I arrive in a hotel I want a glass of ice water. In our two most recent visits to Marriott hotels in New Orleans, the ice machines on our floor did not at first work. It never worked during our stay at the first hotel and worked only occasionally at the second hotel. When I complained at the first hotel, I got a joyful grin and a shrug–the ice machine had been that way for several days and who knows when or if it would be fixed? It’s “easy” to celebrate; it’s hard to fix ice machines and keep them running.

There were barriers on Bourbon Street that could have kept the terrorist from killing 14. But it has come out that they were not working and it was not “easy” to fix them. (There were also supposed to be levies that could have reduced the damage from Hurricane Katrina, but it was not “easy” to fix them either.)

I like visiting New Orleans. I like its joyful spontaneity. But what makes New Orleans “the Big Easy” also makes it “the Big Frustrating” and “the Big Vulnerable.” I like visiting New Orleans but I want to live in a city where type-A personalities do what is hard: build, fix, and protect.

Dislodging Entrenched Special Interests Requires the Courage to Be the Target of Ill-Will

Many years ago, for reasons I forget, I listened to an interview posted online with Charlie Munger, who for decades was Warren Buffett’s sidekick at Berkshire Hathaway. One portion of Munger’s comments struck me as particularly insightful, so insightful, that I replayed that portion several times so I could write down a rough transcript of the comments. I am posting that rough transcript a few paragraphs below.

A lot of progress in healthcare, and in the world more broadly, depends on individual heroes who have the courage to be the target of ill-will in order to champion truth and virtue, against the powerful special interests that benefit from falsehood and corruption. Those who speak out are often cancelled and have their careers ruined. We remember a few of the names of those who eventually were vindicated. For example Ignaz Semmelweis was cancelled by the medical establishment for arguing that doctors should wash their hands before delivering babies. He eventually was vindicated and remembered, though long after he died of a beating in an insane asylum. Several much-more-recent examples can be found in Marty Makary’s thought-provoking Blind Spots. (Makary has been named by President-Elect Trump to head the Food and Drug Administration.)

Those like Semmelweis who suffered but were vindicated, are painful to ponder. How much more painful to ponder are those who fought the good fight but were never vindicated, and so are utterly forgotten? We justly honor the unknown soldier. We should find a way to also justly honor the unknown speaker of truth to power.

I cringe at Donald Trump’s occasional rudeness and bullying, but I hope that his courage to be the target of ill-will, allow him to succeed in unbinding the entrepreneurs who create breakthrough innovations.

Below is my transcript of a small portion of Charlie Munger’s comments at the University of Michigan in 2010. My memory is that Munger made his comments in answers to expansive questions from Becky Quick as part of a celebration to honor Munger’s donations to the University of Michigan. Munger’s story below is from health care, but the moral from the story applies much more broadly. (Munger’s interest in health care led him to chair the board of trustees of Good Samaritan Hospital in Los Angeles for over 30 years.)

And so there’s a lot of abuse in health care. And one of the ways you fix it is to, is for the people who have the power, they exercise it to prevent the abuse.

In a lot of places you have live and let live, in the hospitals it’s live and let live, because nobody wants to criticize anybody. That’s a huge mistake, a huge mistake.

In our leading academic hospitals (I’m sure this isn’t happening in Michigan); [1:41:03 of recording] but I have a friend whose daughter is head of infectious diseases and something at a medical school hospital, a great hospital.

And of course the doctors there are fishing the patients out of nursing homes, and bringing them in so they can walk by the beds, and bill them. And they are bringing in these terrible infections. And that takes a lot of treatment, and a lot of walks by the bed, and so on, and so on.

Of course the parents of this particular doctor recognize that she is sort of risking her life going through medical school because of the abuse of the system by some of the doctors in a hospital where nobody is stopping the abuse.

It’s like Burke said, for evil to triumph in the world, all that is necessary is that good men do nothing. And all over America some people are intervening to stop some of these abuses. And, and you have to identify them; you have to rationalize them; you have to be willing to take the ill-will.

I have a friend, this is another wonderful story on human nature, chief of the medical staff, southern California hospital.

A bunch of non-board-certified anesthesiologists, who came out of, I forget the sub-branch of medicine; but it’s not, it’s not chiropractic, but it’s . . . anyway they got in control of the anesthesia department of the hospital.

[1:42 of recording]

And he could see that they had created three totally unnecessary deaths and had covered up every single one. And he knew that this was just gonna to ruin his life. So he got rid of them all. Changed the whole system. He ruined families, he ruined incomes, he cleaned house. And he told me the story 20 years later, and I said what happened. And he said, to this day none of the people I cleaned out and none of their friends has ever spoken to me. He was willing to take all that ill will to do the Lord’s work, and do it right.

And you can say, why did he wait for the third death? Maybe he felt he needed that much horror to accomplish the fix.

But all over America, there are stories like that. That’s a GOOD story about human nature. That’s a story about wisdom and virtue triumphing; and of course they don’t always win.

Even in a bull fight, the bull sometimes wins.

[1:44 of recording– relevant segment over]

The interview with Munger is:

Quick, Rebecca (interviewer). “A Conversation with Charlie Munger.” University of Michigan Ross School of Business, Sept. 14, 2010.

(Note: at three places in the recording I roughly indicate in brackets the time into the posted recording, in case anyone wants to watch the video and check the accuracy of my rough transcript. Let me know if you find an error.)

The Marty Makary book that I praise in my initial comments is:

Makary, Marty. Blind Spots: When Medicine Gets It Wrong, and What It Means for Our Health. New York: Bloomsbury Publishing, 2024.

Neuroscience Evidence that Our Brains Store Tacit Knowledge Separately from Articulate Formal Knowledge

(p. 10) On Aug. 25, 1953, a Connecticut neurosurgeon named William Beecher Scoville drilled two silver-dollar-size holes into the skull of Henry Molaison, a 27-year-old man with epilepsy so severe he had been prohibited from walking across stage to receive his high school diploma. Scoville then used a suction catheter to slurp up Molaison’s medial temporal lobes, the portion of the brain that contains both the hippocampus and the amygdala. The surgeon had no idea if the procedure would work, but Molaison was desperate for help: His seizures had become so frequent that it wasn’t clear if he would be able to hold down a job.

As it happened, Scoville’s operation did lessen Molaison’s seizures. Unfortunately, it also left him with anterograde amnesia: From that day forth, Molaison was unable to form new memories. Over the course of the next half-century, Patient H.M., as Molaison was referred to in the scientific literature, was the subject of hundreds of studies that collectively revolutionized our understanding of how memory, and the human brain, works. Before H.M., scientists thought that memories originated and resided in the brain as a whole rather than in any one discrete area. H.M. proved that to be false. Before H.M., all memories were thought of in more or less the same way. H.M.’s ability to perform dexterous tasks with increasing proficiency, despite having no recollection of having performed the tasks before, showed that learning new facts and learning to do new things happened in different places in the brain.

. . .

Several well-received books have already been written about Molaison, including one published in 2013 by Suzanne Corkin, the M.I.T. neuroscientist who controlled all access to and oversaw all research on ­Molaison for the last 31 years of his life.

What else, you might wonder, is there to say? According to the National Magazine Award-winning journalist Luke Dittrich, plenty. Dittrich arrived at Molaison’s story with a distinctly personal perspective — he is Scoville’s grandson, and his mother was Corkin’s best friend growing up — and his work reveals a sordid saga that differs markedly from the relatively anodyne one that has become accepted wisdom.

. . .

(p. 11) In her book, Corkin described Molaison as carefree and easygoing, a sort of accidental Zen master who couldn’t help living in the moment. In one of her papers, which makes reference to but does not quote from a depression questionnaire Molaison filled out in 1982, Corkin wrote that Molaison had “no evidence of anxiety, major depression or psychosis.” Dittrich located Molaison’s actual responses to that questionnaire, which had not been included in Corkin’s paper. Among the statements Molaison circled to describe his mental state were “I feel that the future is hopeless and that things cannot improve” and “I feel that I am a complete failure as a person.”

. . .

Molaison has long been portrayed as the victim of a surgeon’s hubris. Dittrich’s book, and the reaction to it, highlight why the lessons learned from his life cannot be limited to those stemming from a single act in the distant past. It’s easy to criticize the arrogance of researchers after they’re dead — and after we’ve already enjoyed the fruits of their work. With most of the principals in the tragedy of “Patient H.M.” now gone, the question at the core of Dittrich’s story — did the pursuit of knowledge conflict with the duty of care for a human being? — remains, in every interaction between scientist and vulnerable subject.

For the full review see:

Seth Mnookin. “Man Without a Past.” The New York Times Book Review (Sunday, September 4, 2016 [sic]): 10.

(Note: ellipses added.)

(Note: the online version of the review has the date Aug. 29, 2016 [sic], and has the title “A Book Examines the Curious Case of a Man Whose Memory Was Removed.”)

The book under review above is:

Dittrich, Luke. Patient H.M.: A Story of Memory, Madness, and Family Secrets. New York: Random House, 2016.

The earlier book by Corkin mentioned above is:

Corkin, Suzanne. Permanent Present Tense: The Unforgettable Life of the Amnesic Patient, H. M. New York: Basic Books, 2013.

Loners Live Longer (At Least if You Are a Marmot)

(p. D2) For many mammals, a busy social life can be an important contributor to a long life. But some animals need more alone time than others, and failure to get it could be lethal, according to new research.

Consider the marmot. After spending 13 years tracking their interactions and life spans in Colorado, Daniel T. Blumstein, a biologist at the University of California, Los Angeles, and his colleagues found in a study published Wednesday [Jan. 17, 2018] in Proceedings of the Royal Society B that yellow-bellied marmots with more active social lives tended to die younger than those that avoided interactions.

For the full story see:

Douglas Quenqua. “Being Antisocial Leads to a Longer Life. For Marmots at Least.” The New York Times (Tuesday, Jan. 23, 2018 [sic]): D2.

(Note: bracketed date added.)

(Note: the online version of the story has the date Jan. 17, 2018 [sic], and has the title “Being Antisocial Leads to a Longer Life. For Marmots.” The Latin words in the first quoted sentence appear in italics in the original version.)

The academic study of Marmots discussed in the passages above is:

Blumstein, Daniel T., Dana M. Williams, Alexandra N. Lim, Svenja Kroeger, and Julien G. A. Martin. “Strong Social Relationships Are Associated with Decreased Longevity in a Facultatively Social Mammal.” Proceedings of the Royal Society B: Biological Sciences 285, no. 1871 (Jan. 2018): 20171934.

Formal and Tacit Knowledge Are Located in Different Parts of the Brain

Brenda Milner turned 106 on July 15, 2024.

(p. D5) At 98, Dr. Milner is not letting up in a nearly 70-year career to clarify the function of many brain regions — frontal lobes, and temporal; vision centers and tactile; the left hemisphere and the right — usually by painstakingly testing people with brain lesions, often from surgery. Her prominence long ago transcended gender, and she is impatient with those who expect her to be a social activist. It’s science first with Dr. Milner, say close colleagues, in her lab and her life.

Perched recently on a chair in her small office, resplendent in a black satin dress and gold floral pin and banked by moldering towers of old files, she volleyed questions rather than answering them. “People think because I’m 98 years old I must be emerita,” she said. “Well, not at all. I’m still nosy, you know, curious.”

. . .

Dr. Milner changed the course of brain science for good as a newly minted Ph.D. in the 1950s by identifying the specific brain organ that is crucial to memory formation.

She did so by observing the behavior of a 29-year-old Connecticut man who had recently undergone an operation to relieve severe epileptic seizures. The operation was an experiment: On a hunch, the surgeon suctioned out two trenches of tissue from the man’s brain, one from each of his medial temporal lobes, located deep below the skull about level with the ears. The seizures subsided.

But the patient, an assembly line worker named Henry Molaison, was forever altered. He could no longer form new memories.

. . .

In a landmark 1957 paper Dr. Milner wrote with Mr. Molaison’s surgeon, she concluded that the medial temporal areas — including, importantly, an organ called the hippocampus — must be critical to memory formation. That finding, though slow to sink in, would upend the accepted teaching at the time, which held that no single area was critical to supporting memory.

Dr. Milner continued to work with Mr. Molaison and later showed that his motor memory was intact: He remembered how to perform certain physical drawing tests, even if he had no memory of learning them.

The finding, reported in 1962, demonstrated that there are at least two systems in the brain for processing memory: one that is explicit and handles names, faces and experiences; and another that is implicit and incorporates skills, like riding a bike or playing a guitar.

“I clearly remember to this day my excitement, sitting there with H. M. and watching this beautiful learning curve develop right there in front of me,” Dr. Milner said. “I knew very well I was witnessing something important.”

. . .

For Dr. Milner, after a lifetime exploring the brain, the motive for the work is personal as well as professional. “I live very close; it’s a 10-minute walk up the hill,” she said. “So it gives me a good reason to come in regularly.”

For the full story see:

Benedict Carey. “At 98, ‘Still Nosy’ About the Brain.” The New York Times (Tuesday, May 16, 2017 [sic]): D5.

(Note: ellipses added.)

(Note: the online version of the story has the date May 15, 2017 [sic], and has the title “Brenda Milner, Eminent Brain Scientist, Is ‘Still Nosy’ at 98.”)

The “landmark 1957 paper” mentioned above is:

Scoville, William Beecher, and Brenda Milner. “Loss of Recent Memory after Bilateral Hippocampal Lesions.” Journal of Neurology, Neurosurgery & Psychiatry 20, no. 1 (Feb. 1957): 11-21.