Using the Blood of the Young to Rejuvenate the Organs of the Old

The strange longevity therapy described in the passages quoted below, are hard to test, especially if started at a time in life early enough to do the most good.

Phase 3 clinical trials to establish the efficacy of a therapy are in general very expensive, and they are especially very expensive for therapies aimed at extending lifespan. To know the efficacy of such therapies you have to run the trial for many years, before you can learn the lifespans of all of those in the trial.

This may be one reason why pharma firms instead invest in incremental improvements in health tested for those predicted to be near the end of their lives.

Azra Raza claims that the most promising therapies for cancer would be those applied early in the disease. But it is precisely these candidate therapies that would be most expensive to test through a hyper-expensive Phase 3 clinical trial. The result? Unnecessarily slow progress in curing cancer.

(p. B3) Several years ago, scientists studying aging at the Harvard Stem Cell Institute used a somewhat Frankensteinian technique known as parabiosis — surgically joining a young mouse and an old mouse so that they share blood — to see what would happen to the heart and skeletal muscle tissue. They knew from previous research that putting young blood in old mice caused them to grow biologically younger, and that young mice exposed to old blood aged faster.

The Harvard researchers, Amy Wagers and Dr. Richard Lee, found that the old mouse’s heart tissue had been repaired and rejuvenated, becoming young again. In fact, the size of the old mouse’s heart had reduced to that of a young heart.

“We all wondered, what’s the magic stuff in the blood?” said Lee Rubin, a professor of stem cell and regenerative medicine at Harvard and the co-director of the neuroscience program at the Stem Cell Institute. The “magic” they identified was a protein, GDF11, one of tens of thousands produced in the human body.  . . .  The scientists’ discoveries were published in the journals Cell and Science in 2013 and 2014.

. . .

“We’re interested in proteins like GDF11 that are excreted into the bloodstream because those can cause changes throughout the body,” said Dr. Mark Allen, the chief executive of Elevian. “And those are the kind of changes we want.”

. . .

The initial research into the rejuvenating properties of GDF11 has gotten some pushback from the scientific community. In 2015, after Dr. Wagers and Dr. Lee had published their results, a group of researchers led by David Glass, the executive director of the Novartis Institutes for Biomedical Research in Cambridge, Mass., at the time, challenged the accuracy of their findings in an article in the journal Cell Metabolism. The Harvard researchers subsequently countered the Novartis team’s findings in another paper published later that year in the journal Circulation Research, in which the Harvard researchers cited a problem with the Novartis team’s findings.

Dr. Glass, who is now at the biotechnology company Regeneron, said in a recent email that he stands by his original work, which showed that GDF11 inhibits, rather than helps, muscle regeneration. But, he added, “our work still leaves open the possibility that there could be positive effects of GDF11 in particular settings.”

Dr. Allen said that since the original controversy, Elevian’s research team has reproduced and extended its original findings in multiple studies, but none have yet been published in peer-reviewed journals. However, institutions unrelated to Elevian have conducted and published many preclinical studies demonstrating the therapeutic efficacy of rGDF11 (the form of GDF11 developed in a lab) in treating age-related diseases.

. . .

A significant challenge lies ahead for all of these companies: Commercializing a drug for aging is nearly impossible because the F.D.A. doesn’t recognize aging as a disease to be treated. And even if it were considered a disease, the clinical studies required to prove that a treatment for it worked would take many years.

“It is likely that clinical studies to see if some drug slows aging — and thereby delays the many consequences of aging — would take a long time,” Dr. Miller said.

. . .

The next big hurdle for Elevian is scaling its manufacturing, which requires specialized equipment and conditions. So much research is being conducted in biotech that contract manufacturers are “full up,” Dr. Allen said. “They are busy with Covid-related work, and there has been a lot of funding in biotech generally,” he added. “So it’s a challenge finding the space that meets our specifications.”

. . .

“By targeting fundamental mechanisms of aging, we have the opportunity to treat or prevent multiple aging-related diseases and extend the health span,” he said. “We want to make 100 the new 50.”

For the full story see:

Eilene Zimmerman. “Biotech Start-Up Invests in Anti-Aging Therapy.” The New York Times (Monday, August 1, 2022 [sic]): B3.

(Note: the online version of the story has the date July 19, 2022 [sic], and has the title “Can a ‘Magic’ Protein Slow the Aging Process?”)

The published academic articles supporting the promising effects of GDF11 are:

Katsimpardi, Lida, Nadia K. Litterman, Pamela A. Schein, Christine M. Miller, Francesco S. Loffredo, Gregory R. Wojtkiewicz, John W. Chen, Richard T. Lee, Amy J. Wagers, and Lee L. Rubin. “Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors.” Science 344, no. 6184 (May 9, 2014): 630-34.

Loffredo, Francesco S., Matthew L. Steinhauser, Steven M. Jay, Joseph Gannon, James R. Pancoast, Pratyusha Yalamanchi, Manisha Sinha, Claudia Dall’Osso, Danika Khong, Jennifer L. Shadrach, Christine M. Miller, Britta S. Singer, Alex Stewart, Nikolaos Psychogios, Robert E. Gerszten, Adam J. Hartigan, Mi-Jeong Kim, Thomas Serwold, Amy J. Wagers, and Richard T. Lee. “Growth Differentiation Factor 11 Is a Circulating Factor That Reverses Age-Related Cardiac Hypertrophy.” Cell 153, no. 4 (May 9, 2013): 828-39.

Poggioli, Tommaso, Ana Vujic, Peiguo Yang, Claudio Macias-Trevino, Aysu Uygur, Francesco S. Loffredo, James R. Pancoast, Miook Cho, Jill Goldstein, Rachel M. Tandias, Emilia Gonzalez, Ryan G. Walker, Thomas B. Thompson, Amy J. Wagers, Yick W. Fong, and Richard T. Lee. “Circulating Growth Differentiation Factor 11/8 Levels Decline with Age.” Circulation Research 118, no. 1 (Jan. 2016): 29-37.

Sinha, Manisha, Young C. Jang, Juhyun Oh, Danika Khong, Elizabeth Y. Wu, Rohan Manohar, Christine Miller, Samuel G. Regalado, Francesco S. Loffredo, James R. Pancoast, Michael F. Hirshman, Jessica Lebowitz, Jennifer L. Shadrach, Massimiliano Cerletti, Mi-Jeong Kim, Thomas Serwold, Laurie J. Goodyear, Bernard Rosner, Richard T. Lee, and Amy J. Wagers. “Restoring Systemic Gdf11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle.” Science 344, no. 6184 (May 9, 2014): 649-52.

The book by Asra Raza that I praise in my introductory comments is:

Raza, Azra. The First Cell: And the Human Costs of Pursuing Cancer to the Last. New York: Basic Books, 2019.

Dying Cells in a Tumor May Be a Cause of Metastasis

I have read that most cancer deaths occur due to metastasis. Cancer that remains limited to an original tumor can often be managed as a long-term chronic condition. If Cheung (below) is right that dying cells in a tumor are an important cause of metastasis, then does that suggest that senolytic drugs that kill senescent cells, may be useful in delaying or stopping metastasis?

(p. D7) Much about how tumors metastasize — spread and take up residence in faraway sites — still remains a mystery, said Dr. Kevin Cheung, an associate professor of hematology and oncology at the Fred Hutch Cancer Center in Seattle, Washington. His research recently showed that dead and dying cells within a tumor might create an environment that makes it easier for living tumor cells to get out and spread.

For the full story see:

Nina Agrawal. “Exploring Some Big Questions About Cancer.” The New York Times (Tuesday, February 4, 2025): D7.

(Note: the online version of the story has the date Jan. 29, 2025, and has the title “7 Big Questions About Cancer, Answered.”)

The academic article co-authored by Cheung and mentioned above is:

Yamamoto, Ami, Yin Huang, Brad A. Krajina, Margaux McBirney, Andrea E. Doak, Sixuan Qu, Carolyn L. Wang, Michael C. Haffner, and Kevin J. Cheung. “Metastasis from the Tumor Interior and Necrotic Core Formation Are Regulated by Breast Cancer-Derived Angiopoietin-Like 7.” Proceedings of the National Academy of Sciences 120, no. 10 (2023): e2214888120.

Curing Cellular Senescence Could Extend Healthy Lifespan

Senolytics are chemicals that kill senescent cells, cells that do function properly but do not die. The cells are believed to cause aging and eventual death. They also are believed to cause illnesses such as coronary artery disease and Alzheimer’s. If senescent cells can be expelled, then we can hope to extend, not just lifespan, but what really matters–healthy lifespan.

(p. A10) The same underlying factors that contribute to aging also play a role in the development of diseases, says Richard Faragher, a professor of biogerontology at the University of Brighton and board member of the American Federation for Aging Research. He cites the example of a biological process called cellular senescence, which is when cells that stop dividing but don’t die build up as people age. The process is linked to various age-related diseases.

“Can we do anything to impact the fundamental biology of human aging? I think the answer is an emphatic yes,” says Faragher.

Longevity drugs, if proven to work, could slow or prevent the onset of age-related conditions rather than treating them after they develop, and eventually save millions on chronic disease spending in later life, advocates say. In 2021, the costliest 1% of traditional Medicare beneficiaries accounted for 19% of spending, according to the nonpartisan watchdog agency the Medicare Payment Advisory Commission. Beneficiaries in their last year of life tend to generate more spending than others.

For the full story see:

Alex Janin. “The Scientific Fight Over Whether Aging Is a Disease.” The Wall Street Journal (Wednesday, Feb. 5, 2025): A10.

(Note: the online version of the story has the date January 27, 2025, and has the same title as the print version.)

Mainstream Approach to Alzheimer’s Is Built on Doctored Data

Widespread fraud among highly credentialled, and richly financed, medical researchers results in fewer and slower cures. Many millions of dollars are required to bring a major drug to market, much of it due to the hyper-costly and mandated Phase 3 randomized double-blind clinical trials. There are more good ideas than can received such financing. The intense competition creates a temptation to cut various corners, as the book review quoted below emphasizes.

Aaron Rothstein, the reviewer of Piller’s Doctored book, emphasizes the sad revelation of widespread fraud. But in an earlier entry on this blog, I quoted an essay of Piller’s that suggests that Piller also has something substantive to say about how to cure Alzheimer’s. The current system is broken, vastly reducing the diversity of approaches to curing important diseases like Alzheimer’s. Piller suggests that the ruling clique among Alzheimer’s researchers may in effect be silencing other approaches that could bring us a better faster cure.

Rothstein downplays this substantive aspect of Piller’s book. (It probably reflects too much cynicism on my part to wonder how close Rothstein himself is to the ruling clique?)

I look forward to reading Piller’s book, both for what it has to say about widespread fraud and for what it has to say about Alzheimer’s. Doctored is scheduled for release in a few days, on February 4, 2025.

(p. C9) In 2023 my colleagues and I were preparing to enroll patients in a clinical trial of a new drug that promised to mitigate brain damage in stroke victims. The National Institutes of Health, a governmental organization that funds billions of dollars of research every year, had committed $30 million to the trial. The drug was, in part, the brainchild of Berislav Zlokovic, a neuroscientist at the University of Southern California.

Then, suddenly, the NIH paused the trial. Charles Piller, an investigative journalist for Science magazine, had published an article alleging that multiple papers from Dr. Zlokovic, including many supporting the new drug, contained seemingly altered data. Though Dr. Zlokovic disputed some of the concerns, this news stunned us. We might have put patients at risk, while offering groundless hope. A fraud of the sort Mr. Piller described would violate the basic ethics of clinical trials and overturn the presumption of trust on which the practice of medicine relies.

I thought of this episode often as I read Mr. Piller’s “Doctored,” which brings together his long-form journalism about neuroscience-research malfeasance, including that alleged of Dr. Zlokovic. Though the book sometimes attempts to do too much—diving into scientific theories about the causes of Alzheimer’s, for example—its strength lies in Mr. Piller’s dramatic and damning investigation of scientific transgression. The author’s reporting is largely based on the research of Matthew Schrag, a Vanderbilt neurologist who uses technical expertise to identify episodes of misconduct.

. . .

Mr. Piller thoroughly double checks Dr. Schrag’s work. He asks researchers and image analysts to confirm Dr. Schrag’s findings, and they concur.

. . .

“Doctored” demonstrates how some of the most accomplished and elite scientific gatekeepers may have lied, cheated, squandered trust and endangered lives. How did this happen? The temptations of ego and fame perennially entice humans, but our system of peer review, grant funding and administrative oversight is meant to check these temptations.

The scientific publication process does not contain all the safeguards one might expect. Peer reviewers do not always see the original data from authors. Thus they trust that numbers or images in a manuscript accurately reflect the experiment. And determining whether an image is fraudulent requires skilled image analysis that peer reviewers may not possess. Furthermore, digging for such mistakes is costly: It takes time away from other research, from teaching, from seeing patients and from home life.

What can be done about this? Making raw data available to peer reviewers and giving them time to review articles could help. Mr. Piller suggests a less professionally incestuous relationship between researchers, the Food and Drug Administration, the NIH and pharmaceutical companies could reduce favoritism in funding. A major overhaul of the finances and administrative swell of our system would help, as well.

For the full review see:

Aaron Rothstein. “Medical Promise Betrayed.” The Wall Street Journal (Saturday, Jan. 25, 2025): C9.

(Note: the online version of the review has the date January 24, 2025, and has the title “‘Doctored’ Review: Medical Promise Betrayed.”)

The book under review is:

Piller, Charles. Doctored: Fraud, Arrogance, and Tragedy in the Quest to Cure Alzheimer’s. New York: Atria/One Signal Publishers, 2025.

At Age 84 Scolnick Has the Passion to Persevere at Curing His Son’s Illness

Many of those with the passion to persevere in overcoming the necessary and unnecessary (regulatory) obstacles to medical innovation, do so because they have a sense of urgency due to skin in the game–they or a relative is directly affected by the disease they are passionate to cure. Dr. Edward Scolnick whose story I quote below, is a great example. In the story, we find another example, Ted Stanley, who donated $100 million to Scolnick because Stanley’s son is also suffering mental illness. And perhaps an indirect example? Rienhoff does not directly have skin in the game, but he is playing a key role because of Scolnick’s passion, and Scolnick’s passion is due to his skin in the game.

If we want more cures we will reduce the unnecessary (regulatory) obstacles so that those with less skin in the game (and so less passion to persevere) will also innovate.

[“Skin in the game” has been emphasized by Taleb in his book with that title.]

(p. A1) Dr. Edward Scolnick figures he needs five, maybe 10 more years to solve one of the brain’s greatest mysteries.

Scolnick, 84 years old, has spent most of the past two decades working to understand and find better ways to treat schizophrenia and bipolar disorder, mental illnesses suffered by tens of millions of people, including his son.

“I know I can crack it,” said Scolnick, a noted drug developer who spent his career plumbing the building blocks of DNA for new treatments.

Long before his latest quest, Scolnick spent 22 years at Merck, mostly as head of the drug giant’s laboratory research. He led development of more than two dozen medicines, including the first approved statin to lower cholesterol, an osteoporosis treatment and an anti-HIV therapy.

. . .

(p. A9) In 2021, Scolnick learned that a group of scientists analyzing DNA from thousands of people with schizophrenia had found mutations in 10 genes that substantially increased the risk of developing the illness. They estimated that a mutation on a single gene, called Setd1a, raised the risk 20-fold.

“It got my blood boiling,” Scolnick said. He began pursuing an emerging class of treatments called LSD1 inhibitors, hoping to develop a new drug. Scolnick enlisted Dr. Hugh Young Rienhoff Jr., who recently developed an LSD1 inhibitor to treat blood disorders.

. . .

Rienhoff anticipates testing a new drug for safety as early as next year, first in animals. He said he saw Scolnick’s passion about fielding a breakthrough treatment but didn’t fully understand why until Scolnick shared about his son’s lifelong struggles with mental illness.

Jason Scolnick, 54, said his doctor has been regularly fine-tuning his medications for bipolar disorder over the years to minimize their debilitating side effects. Using the drugs currently prescribed for schizophrenia or bipolar disorder is like undergoing chemotherapy, he said. “There’s no guarantee it will work and it makes you feel terrible, but the cancer will feel worse or kill you.”

There remains a long road ahead for any new medicine. It takes more than a decade, on average, to get a drug from the research lab through government approvals to patients.

. . .

After leaving Merck, Scolnick was hired in 2004 by the Broad Institute of MIT and Harvard to lead research on psychiatric disorders. He fostered ties with Ted Stanley, a memorabilia entrepreneur whose son also suffered with mental illness. In 2007, Stanley gave $100 million to launch the Stanley Center for Psychiatric Research at the Broad, headed by Scolnick for five years.

. . .

Scolnick and Rienhoff had sat together at a Blackstone dinner years earlier. During the meal, Scolnick shared stories with his table companions about Merck’s development of Crixivan, the anti-HIV drug. “I was hearing a piece of history,” Rienhoff said, “not just HIV history.”

Scolnick became emotional describing how the drug developers, facing various obstacles, wrestled with whether or not to keep going. He pushed for the study to continue, given the urgency. At the time, AIDS was killing tens of thousands of people a year in the U.S.

“I said to Ed, ‘You are thinking like a doctor not a scientist,’” Rienhoff said. “That was the beginning of our relationship.”

. . .

Rienhoff has a team of chemists making and testing compounds at labs in the U.S. and abroad.

“I am optimistic something will come of this,” Rienhoff said. “I can do it, but I wouldn’t have done it if not for Ed. I am, really, doing this in a way for Ed.”

. . .

Biotech company Oryzon Genomics in Spain is developing LSD1 inhibitors for cancer and other conditions. Columbia University researchers tried Oryzon’s drug in mice and found it reversed cognitive impairments caused by the Setd1a genetic mutation connected to schizophrenia. Oryzon is running a small trial in Spain of the LSD1 inhibitor in patients with schizophrenia.

Dr. Joseph Gogos, who led the Columbia research, said it was possible such treatments would be approved for people.

Scolnick is more certain—of both a revolutionary new treatment and his living to witness it.

“Before I die, we will see new medicines, new diagnostics, better outcomes for patients burdened by schizophrenia or bipolar illness,” he said. “I will not be happy to die. But I will die happy that my life helped.”

For the full story see:

Amy Dockser Marcus. “Aging Scientist Races Against Time.” The Wall Street Journal (Friday, Nov. 29, 2024): A1 & A9.

(Note: ellipses added.)

(Note: the online version of the story has the date November 26, 2024, and has the title “A Scientist’s Final Quest Is to Find New Schizophrenia Drugs. Will He Live to See Them?”)

Keep Raging at “the Dying of the Light”

I still remember as an undergraduate at Wabash College reading in our intro psychology textbook of an experiment in which a dog was put in a box. Every time the dog tried to leap out of the box, he received an electric shock. Eventually the electric current was turned off. But the dog never again tried to leap. Are we like the dog, too discouraged by past constraints, so that we are resigned to accept the Biblical limit of “three score and 10” (Psalm 90:10)?

But there is a paradox. Kloc cites an article claiming a very high market value for expanded lifespans. But then where are the voters urgently demanding that medical entrepreneurs be unbound? Where are the citizens demanding that regulators stop mandating Phase 3 clinical trials? Citizens with a sense of urgency can make a difference–see the Act-Up movement in the early years of AIDs. When will they?

(p. 1) The longevity industry is coming off perhaps its best run on record. The expected span of an American life has increased by about three decades since 1900 — to around 78 as of 2023. But for many people, even 78 years just won’t do.

The Methuselah Foundation, a biomedical charity, for example, wants to “make 90 the new 50,” and scientists at one biotechnology firm have argued that, unencumbered by disease, the body could potentially make it all the way to age 150. Even more optimistic estimates put the number closer to 1,000.

​​Whatever the maximum human life span may be, people appear increasingly determined to find it — in particular men, who are more inclined to favor radically extending life, maybe even indefinitely. Last year, nearly 6,000 studies of longevity made their way onto PubMed, a database of biomedical and life sciences papers; that’s almost five times as many as two decades ago.

Along with the creation of dozens of popular podcasts and a sizable supplement industry, that zeal has led to efforts to preserve organs, search out life-extending diets and even try to reverse aging itself.

. . .

(p. 24) Researchers at Harvard and Oxford recently tried to gauge that interest in the marketplace today. They estimated that the total value of any scientific breakthrough that added another decade to global life expectancy would be worth $367 trillion.

For the full story see:

Joe Kloc. “Gilgamesh, Ponce and the Quest to Live Forever.” The New York Times, First Section (Sunday, January 19, 2025): 1 & 24.

(Note: ellipsis added.)

(Note: the online version of the story has the date Jan. 18, 2025, and has the title “The Centuries-Old, Incredibly Male Quest to Live Forever.”)

When Kloc mentions estimates of possible human lifespan “closer to 1,000” he links to a Scientific American interview with João Pedro de Magalhães, professor of biogerontology at England’s University of Birmingham. João Pedro de Magalhães believes that in principle humans could live to 1,000:

Gifford, Bill. “How Old Can Humans Get?” Scientific American (July 31, 2023). Available from https://www.scientificamerican.com/article/how-old-can-humans-get/.

When Kloc says that some “even try to reverse aging itself” he links to:

Poganik, Jesse R., Bohan Zhang, Gurpreet S. Baht, Alexander Tyshkovskiy, Amy Deik, Csaba Kerepesi, Sun Hee Yim, Ake T. Lu, Amin Haghani, Tong Gong, Anna M. Hedman, Ellika Andolf, Göran Pershagen, Catarina Almqvist, Clary B. Clish, Steve Horvath, James P. White, and Vadim N. Gladyshev. “Biological Age Is Increased by Stress and Restored Upon Recovery.” Cell Metabolism 35, no. 5 (2023): 807-20.

Kloc also links to estimates of the economic value of extending lifespans by one year, and by a decade, as given in:

Scott, Andrew J., Martin Ellison, and David A. Sinclair. “The Economic Value of Targeting Aging.” Nature Aging 1, no. 7 (July 2021): 616-23.

“Rage, rage against the dying of the light” is a line from Dylan Thomas’s poem “Do Not Go Gentle Into That Good Night.”

Drugs for Dog Longevity May Also Aid Human Longevity

Dogs have long contributed to advances in human medicine. For instance C. Walton Lillehei experimented on dogs to develop his path-breaking human open-heart operations (see the book King of Hearts). What pains me about those dog contributions is that the dogs themselves died in the experiments. In the more recent dog contributions to human medicine, as discussed in the passages quoted below, the dogs themselves have a good chance to benefit as they contribute to human health. I like that a lot better.

(p. A11) In the quest to help people live longer, scientists and companies are turning to dogs.

. . .

Behind the growing enthusiasm is a mix of scientists and entrepreneurs—building on the surging interest from people aiming to live longer. These groups say insights into dog longevity could provide lessons and perhaps eventually treatments that could help people, too.

. . .

On Tuesday [Nov. 28, 2023], a biotech startup that’s hoping to have the first FDA-approved treatment to extend healthy lifespan in dogs, took a step toward that goal. In a letter viewed by The Wall Street Journal, the Food and Drug Administration affirmed that its drug had demonstrated “reasonable expectation of effectiveness.”

The company, called Loyal, still has to complete several more steps before it can market the drug, and it’s only aimed at canines.

. . .

Celine Halioua, chief executive of Loyal, the biotech startup working toward conditional approval of its lifespan drug, says there is a larger aim in addition to helping dogs live healthier for longer. The company has set a possible precedent for other drugs to be approved for lifespan extension, potentially opening a door for other animal—or human—drug companies to follow.

“I think we can both take the opportunity to build better medicines for our dogs and also to better understand these really complex diseases,” says Halioua, whose own 85-pound Rottweiler mix, Della, is nearing the end of her projected lifespan.

The firm’s drug is an injectable that is designed to reduce levels of IGF-1, a hormone that drives cell growth, in large dogs. High blood levels of IGF-1 have been associated with shorter lifespans in some animal and human studies.

The company’s research has indicated that the drug can reduce those hormone levels, but it would still need a large clinical trial demonstrating it can extend dog lifespans in order to achieve full FDA approval. It also needs the agency’s signoff on the drug’s safety and proper manufacturing before getting conditional approval and beginning to sell it, which Loyal hopes to do in 2026.

Still, the FDA nod this week is a promising next step for the field, dog aging researchers say, and will likely drive more interest from biotech and pharmaceutical companies.

“If it is proven that the drug is effective in dogs then there is a higher chance that it will work in the case of humans, too,” says Eniko Kubinyi, a biologist studying dog behavior and cognition with the Budapest-based Family Dog Project.

For the full story see:

Alex Janin. “Secrets of Anti-Aging, Gleaned From Dogs.” The Wall Street Journal (Thursday, Nov. 30, 2023 [sic]): A11.

(Note: ellipses, and bracketed date, added.)

(Note: the online version of the story has the date November 29, 2023 [sic], and has the title “The Clues to Longer Life That Are Coming From Dogs.” The last four paragraphs quoted above appeared in the more detailed online version, but not the print version, of the article. Some of the earlier quoted sentences are quoted in the longer form that appeared in the online version.)

The biography of Lillehei mentioned in my opening comments above is:

Miller, G. Wayne. King of Hearts: The True Story of the Maverick Who Pioneered Open Heart Surgery. New York: Crown, 2000.

Medical Researchers Have Incentive to Exclude Older Patients from Clinical Trials

As human beings, medical researchers would like to offer experimental therapies to whoever needs them and is willing to take the risks and uncertainty of new frontiers. But as practical medical researchers medical researchers know their careers depend on the success of their clinical trials, and the success of their clinical trials depends on the number of patients who thrive on the new therapy. So their personal incentive is to cherry-pick clinical trial enrollees, picking only the most robust who are most likely to thrive. The solution? Allow medical researchers to be both human beings and medical researchers. Allow them to give the therapy to those at high risk, based on their cumulative experience and judgement. Not all sound actionable knowledge arises from randomized double-blind clinical trials.

(p. A5) Many cancer trials cap enrollment at age 65. Even when trials for older people are available, oncologists are reluctant to enroll elderly patients because frailties might make them less resilient against side effects from toxic treatments, according to a 2020 study in an American Cancer Society journal. People over 70 represent a growing share of the cancer-patient population but are vastly underrepresented in clinical trials, the study said.

“How can we make decisions for people over 70 if people over 70 are not included in the trials that we use to base our decision making?” said Dr. Mina Sedrak, deputy director of the Center for Cancer and Aging at City of Hope, a cancer center near Los Angeles and an author of the paper.

. . .

The Food and Drug Administration guidelines recommend “adequate representation” of the elderly in cancer trials, including people over age 75. The Journal of the National Cancer Institute in December 2022 published a series of papers presented at a workshop focused on how to improve trial enrollment of older people.

Researchers have developed geriatric assessment tools that try to predict patients’ survival chances based on more than age alone. Professional groups are also working to try to address gaps. Despite these efforts, enrollment of older patients still lags behind, cancer doctors said.

. . .

To participate in many trials involving transplants, patients would have to undergo the more intense chemotherapy whether randomly assigned to receive an experimental treatment or the standard of care. That makes it harder to incorporate older patients into randomized trials, cancer doctors said.

For the full story see:

Amy Dockser Marcus. “Cancer Patient Contests Age Limit for Clinical Trials.” The Wall Street Journal (Monday, Jan. 9, 2023 [sic]): A5.

(Note: ellipses added.)

(Note: the online version of the story has the date Jan. 8, 2023 [sic], and has the title “71-Year-Old Cancer Patient Broke Trial Age Limits for a Chance at a Cure.”)

A preface to the “series of papers” about how to improve trial enrollment of older people,” mentioned above, is:

St. Germain, Diane, and Supriya G Mohile. “Preface: Engaging Older Adults in Cancer Clinical Trials Conducted in the National Cancer Institute Clinical Trials Network: Opportunities to Enhance Accrual.” JNCI Monographs 2022, no. 60 (Dec. 2022): 107-10.

If Immortality Does Not Violate the Laws of Physics, Entrepreneurs Can Achieve It

The late Nobel-Prize-winning physicist and idiosyncratic Richard Feynman also said something similar to the quote attributed to Arram Sabeti below.

I do not believe that Feynman was explicitly named, or had any lines, in the movie “Opennheimer,” but you can see his character in the background of one scene playing the bongo drums. Perhaps he was eccentric, but I liked his views on methodology and his unpretentious, optimistic, and straightforward spirit.

(p. 9) As the longevity entrepreneur Arram Sabeti told The New Yorker: “The proposition that we can live forever is obvious. It doesn’t violate the laws of physics, so we can achieve it.”

For the full commentary see:

Dara Horn. “The Men Who Want to Live Forever.” The New York Times, SundayReview Section (Sunday, January 28, 2018 [sic]): 9.

(Note: the online version of the commentary has the date Jan. 25, 2018 [sic], and has the same title as the print version.)

Gene Mutation Doubles Lifespan of Worms

(p. D2) Once there was a mutant worm in an experiment. It lived for 46 days. This was much longer than the oldest normal worm, which lived just 22.

Researchers identified the mutated gene that had lengthened the worm’s life, which led to a breakthrough in the study of aging — it seemed to be controlled by metabolic processes. Later, as researchers studied these processes, all signs seemed to point to the nucleolus.

. . .

“We think the nucleolus plays an important role in regulating the life span of animals,” said Adam Antebi, a cellular biologist at the Max Planck Institute for Biology of Ageing in Germany. He’s an author of a new review published last week in Trends in Cell Biology that examines all the new ways that researchers have fallen in love with the nucleolus — especially its role in aging.

For the full story see:

JoAnna Klein. “Slithering Sleuths: Finding a Methuselah Of Worms, and a Key To the Aging Process.” The New York Times (Tuesday, May 22, 2018 [sic]): D2.

(Note: ellipsis added.)

(Note: the online version of the story has the date May 20, 2018 [sic], and has the title “The Thing Inside Your Cells That Might Determine How Long You Live.”)

The academic study of the role of the nucleolus in extending lifespans, mentioned above, is:

Tiku, Varnesh, and Adam Antebi. “Nucleolar Function in Lifespan Regulation.” Trends in Cell Biology 28, no. 8 (Aug. 2018): 662-72.

Loners Live Longer (At Least if You Are a Marmot)

(p. D2) For many mammals, a busy social life can be an important contributor to a long life. But some animals need more alone time than others, and failure to get it could be lethal, according to new research.

Consider the marmot. After spending 13 years tracking their interactions and life spans in Colorado, Daniel T. Blumstein, a biologist at the University of California, Los Angeles, and his colleagues found in a study published Wednesday [Jan. 17, 2018] in Proceedings of the Royal Society B that yellow-bellied marmots with more active social lives tended to die younger than those that avoided interactions.

For the full story see:

Douglas Quenqua. “Being Antisocial Leads to a Longer Life. For Marmots at Least.” The New York Times (Tuesday, Jan. 23, 2018 [sic]): D2.

(Note: bracketed date added.)

(Note: the online version of the story has the date Jan. 17, 2018 [sic], and has the title “Being Antisocial Leads to a Longer Life. For Marmots.” The Latin words in the first quoted sentence appear in italics in the original version.)

The academic study of Marmots discussed in the passages above is:

Blumstein, Daniel T., Dana M. Williams, Alexandra N. Lim, Svenja Kroeger, and Julien G. A. Martin. “Strong Social Relationships Are Associated with Decreased Longevity in a Facultatively Social Mammal.” Proceedings of the Royal Society B: Biological Sciences 285, no. 1871 (Jan. 2018): 20171934.