Universally Applicable Egg Guidelines Are Impossible Because Some Are Hypo-Responders and Others Are Hyper-Responders to Dietary Cholesterol

(p. D5) “Intervention studies have shown that moderate egg consumption doesn’t appreciably raise cholesterol levels,” Dr. Hu [chairman of nutrition and epidemiology at the Harvard T.H. Chan School of Public Health] said. “Low to moderate consumption of three or four eggs a week doesn’t appear to have a major effect on blood cholesterol unless the person has high cholesterol or Type 2 diabetes.”

He added, “In most previous studies of healthy people, moderate egg consumption was not associated with a significant increase in cardiovascular risk.” However, among 21,275 participants in the Physicians’ Health Study who were followed for more than 20 years, those who ate one or more eggs a day were more likely to develop heart failure than those who ate eggs infrequently.

“Contradictory findings among different studies are not unusual — it’s part of the scientific process,” Dr. Hu said. “In forming guidelines, you have to look at the totality of evidence rather than overreact to a single new study.”

Zachary S. Clayton, author of a comprehensive review of research on egg consumption and heart health published in Nutrition in 2017, said in an interview that giving two eggs a day for 12 weeks to healthy people didn’t raise any of their cardiovascular risk factors and “actually decreased their triglyceride levels.”

But, Dr. Clayton, a postdoctoral fellow in nutrition at the University of Colorado, Boulder, said, “It’s important to distinguish between hypo-responders and hyper-responders to dietary cholesterol. If someone is a hyper-responder, eating two eggs a day would increase the risk of cardiovascular disease.”

For the full commentary see:

Jane E. Brody. “Cracking the Code on Eggs and Your Diet.” The New York Times (Tuesday, April 23, 2019 [sic]): D5.

(Note: bracketed words quoted from earlier in the commentary.)

(Note: the online version of the commentary has the date April 22, 2019 [sic], and has the title “Should You Be Eating Eggs?”)

Clayton’s co-authored academic review article on the effects of egg consumption, mentioned above, is:

Clayton, Zachary S., Elizabeth Fusco, and Mark Kern. “Egg Consumption and Heart Health: A Review.” Nutrition 37 (May 2017): 79-85.

Bioprospecting Tweaks Venom to Cure Diseases

(p. C3) One of the earliest treatments for ailments from gout to baldness was apitherapy, the medical application of bee venom, which was used in ancient Greece, China and Egypt. The ancient Greeks associated snakes and their venoms with medicine through the god Asclepius, whose followers prescribed venoms as cures and whose staff had a snake wrapped around it—the inspiration for the well-known symbol of medicine today.

Even so, scientists have only recently started to intensively explore the healing powers of venom. “In the 1980s and ’90s, people weren’t saying, ‘We should use venoms as a drug source,’ ” says Glenn King, a biologist at the University of Queensland in Brisbane, Australia. That changed at the beginning of this century: Scientists started to look at venoms as “complex molecular libraries,” he says. The bodily mechanisms that venoms derail often turn out to be the same ones that we need to manipulate to cure deadly diseases.

. . .

Chemical engineers have taken to mining living organisms, fine-tuning their chemicals to be more potent and precise. This process, known as bioprospecting, has had increasing appeal for scientists eager to tackle incurable diseases. Bioprospecting involves selecting a species with a type of venom known to have a specific effect on the human body—say, a snake with venom that causes a steep drop in blood pressure. The scientists will adjust the level of the toxin or tweak it biochemically so that it becomes not harmful but therapeutic.

. . .

Cancer is a natural target, and treatments may be lurking not just in scorpion venom but in the venoms of bees, snakes, snails, and even mammals. A compound derived from venomous shrews concluded a Phase I trial last year. This innovative peptide blocks a calcium channel called TRPV6, which is abundant in cancer cells, starving them of an essential element needed to grow and divide.

. . .

Each venomous animal is an artisanal mixologist, crafting chemical cocktails that can contain thousands of ingredients. The wealth of potential in venoms—each with its unique recipe—is hard to overstate.

For the full commentary see:

Christie Wilcox. “The Healing Powers of Venom.” The Wall Street Journal (Saturday, July 23, 2016 [sic]): C3.

(Note: ellipses added.)

(Note: the online version of the commentary was updated July 25, 2016 [sic], and has the title “The Healing Power of Venom.”)

The commentary quoted above is related to the author’s book:

Wilcox, Christie. Venomous: How Earth’s Deadliest Creatures Mastered Biochemistry. New York: Scientific American/Farrar, Straus and Giroux, 2016.

In Middle Ages the Less Credentialed Offered “Daily Care,” While “Experts” Theorized

(p. 12) A new book about medieval views on medicine helps explain the Oby nuns’ contentment with the cheapness of their lives. In “Medieval Bodies: Life and Death in the Middle Ages,” the British art historian Jack Hartnell tackles a difficult phenomenon: the medieval embrace of medical “theories that have since been totally disproven to the point of absurdity but which nevertheless could not have seemed more vivid or logical in the Middle Ages.”

The doctors of Europe and the Mediterranean were not practical specialists but rather scholars of Greek and Roman natural philosophy, which taught a theory of nature composed of four basic elements (fire, water, earth, air). Each was associated with differing levels of moisture and heat. The human body contained four viscous liquids or “humors”: phlegm, blood, yellow bile and black bile. A doctor’s job was to correct an uneven humoral balance, drying up perceived wetness with spices or relieving an excess of heat with cooling herbs.

While experts promulgated theory, daily care was mostly administered by midwives, apothecaries, dentists and the odd entrepreneurial carpenter. A local barber might puncture your neck to drain three pints of blood if you complained of a headache.

For the full review see:

Josephine Livingstone. “Death by a Thousand Cuts.” The New York Times Book Review (Sunday, January 5, 2020 [sic]): 12.

(Note: the online version of the review has the date Nov. 19, 2019 [sic], and has the title “Bad Bishops, Bloodletting and a Plague of Caterpillars.”)

The book under review is:

Hartnell, Jack. Medieval Bodies: Life and Death in the Middle Ages. New York: W. W. Norton & Company, 2019.

After a Century an Important Serendipitous Health Hunch Is Pursued

All of us (you, me, dogs, and physicians) observe patterns all the time. Some of the patterns, if pursued, could make the world much better. When a physician observes a pattern, even one they cannot articulately describe or justify, they could change their practices, curing more patients, saving more lives. But they are constrained from deviating from mainstream protocols by government regulations, insurance company rules, hospital administrators, and potential lawsuits. How many serendipitous discoveries that would help us flourish are delayed a century, or even totally snuffed out?

(p. C2) . . . my eye was drawn to a new study in the New England Journal of Medicine finding that hysterosalpingography cured some cases of infertility. Hystero refers to the uterus. Salpingo, I knew, relates to the fallopian tubes that funnel eggs to the uterus. Ography relates to imaging—but how could taking a picture of reproductive organs cure anything?

Doctors use hysterosalpingography to see if there are blockages that could be causing fertility problems.

. . .

To look at blockages, technicians have to introduce a teaspoon or two of a dye that’s opaque to X-rays. How that material is introduced, it turns out, is the key to the procedure’s effect on childlessness.

. . .

Smaller studies had given the scientists an idea of what to do next. They randomly chose half of the women to get the X-ray-opaque dye dissolved in oil, while the other half got the dye in water.

. . .

In an average of three months, whether treated or not, about 40% of the women receiving the oil-based dye material became pregnant, while only 29% of the women who got the water-based dye material conceived.

Hysterosalpingography is exactly a century old this year. Luckily, some astute doctors guessed that the method of taking a picture was having an unintended fertility effect, and now research has backed this up. Such serendipity in medical progress is neatly captured by a saying of the great French biologist Louis Pasteur about the need to be ready to see the unexpected: “In the fields of observation, chance only favors the prepared mind.”

The realization that supposedly inert oil could help to fulfill some couples’ dreams has built slowly. No one knows exactly how it works.

For the full commentary see:

Melvin Konner. “Mind & Matter; Can Just Taking a Picture Help to Treat Infertility?” The Wall Street Journal (Saturday, July 29, 2017 [sic]): C2.

(Note: ellipses added.)

(Note: the online version of the commentary has the date July 26, 2017 [sic], and has the same title as the print version. The Latin words in the first quoted sentence appear in italics in the original version.)

The New England Journal of Medicine article discussed in the passages above is:

Dreyer, Kim, Joukje van Rijswijk, Velja Mijatovic, Mariëtte Goddijn, Harold R. Verhoeve, Ilse A.J. van Rooij, Annemieke Hoek, Petra Bourdrez, Annemiek W. Nap, Henrike G.M. Rijnsaardt-Lukassen, Catharina C.M. Timmerman, Mesrure Kaplan, Angelo B. Hooker, Anna P. Gijsen, Ron van Golde, Cathelijne F. van Heteren, Alexander V. Sluijmer, Jan-Peter de Bruin, Jesper M.J. Smeenk, Jacoba A.M. de Boer, Eduard Scheenjes, Annette E.J. Duijn, Alexander Mozes, Marie J. Pelinck, Maaike A.F. Traas, Machiel H.A. van Hooff, Gijsbertus A. van Unnik, Cornelia H. de Koning, Nan van Geloven, Jos W.R. Twisk, Peter G.A. Hompes, and Ben W.J. Mol. “Oil-Based or Water-Based Contrast for Hysterosalpingography in Infertile Women.” New England Journal of Medicine 376, no. 21 (May 25, 2017): 2043-52.

Dogs Pass a Smell Test–Locating Ancient Buried Human Remains

(p. D1) On a sunny summer day in Croatia several years ago, an archaeologist and two dog handlers watched as two dogs, one after another, slowly worked their way across the rocky top of a wind-scoured ridge overlooking the Adriatic Sea.

. . .

Panda, a Belgian Malinois with a “sensitive nose,” according to her handler, Andrea Pintar, had begun exploring the circular leftovers of a tomb when she suddenly froze, her nose pointed toward a stone burial chest. This was her signal that she had located the scent of human remains.

Ms. Pintar said the hair on her arms rose. “I was skeptical, and I was like, ‘She is kidding me,’” she recalled thinking about her dog that day.

Archaeologists had found fragments of human bone and teeth in the chest, but these had been removed months earlier for analysis and radiocarbon dating. All that was left was a bit of dirt, the stone slabs of the tomb and the cracked limestone of the ridge.

. . .

(p. D6) . . . the experiment in Croatia marked the start of one of the most careful inquiries yet carried out of an unusual archaeological method. If such dogs could successfully locate the burial sites of mass executions, dating from World War II through the conflicts in the Balkans in the 1990s, might they be effective in helping archaeologists find truly ancient burials?

. . .

That “test run” was the beginning of a careful study on whether human-remains detection dogs could be an asset to archaeologists. Setting up a controlled study was difficult. Dr. Glavaš had to learn the scientific literature, such as scent theory, far outside the standard confines of archaeology; the same was true for Ms. Pintar and the field of archaeology.

. . .

“I think dogs are really capable of this, but I think it’s a logistical challenge,” said Adee Schoon, a scent-detection-animal expert from the Netherlands who was not involved in the study. “It’s not something you can replicate again and again. It’s hard to train.”

And, as Dr. Schoon noted, dogs are “great anomaly detectors.” Something as subtle as recently disturbed soil can elicit a false alert from a dog that is not rigorously trained.

Nonetheless, the team returned to the necropolis for the first controlled tests in September 2015, and again a full year later. Both times, they used all four of Ms. Pintar and Mr. Nikolić’s cadaver dogs: Panda, Mali, a third Belgian Malinois and a German shepherd. They worked them on both known and double-blind searches, in areas where nobody knew if tombs were located.

The dogs located four tombs new to the archaeologists. Dr. Glavaš had suspected that a fifth site might hold a burial chest, and the dogs’ alerts, combined with excavation, proved her suspicion correct.

In September 2019, the Journal of Archaeological Method and Theory published the results of their study: “This research has demonstrated that HRD dogs are able to detect very small amounts of specific human decomposition odor as well as to indicate to considerably older burials than previously assumed,” Dr. Glavaš and Ms. Pintar wrote.

Dr. Schoon, who researches and helps create protocols to train scent-detection animals worldwide, said the Iron Age necropolis study was nicely designed and “really controlled.”

. . .

Cadaver dogs are also helping archaeologists at some especially challenging sites. Mike Russo and Jeff Shanks, archaeologists with the National Park Service’s Southeast Archeological Center, had created at least 14 test holes near a promising site in northwest Florida that had been flattened during an earlier era of less diligent archaeology. They found nothing.

“We knew where it should be, but when we went there, there was absolutely no mound,” Mr. Russo said.

They then asked Suzi Goodhope, a longtime cadaver-dog handler in Florida, to bring her experienced detection dog, Shiraz, a Belgian Malinois, to the site in 2013. Shiraz and Ms. Goodhope worked the flat, brushy area for a long time. Then, Shiraz sat. Once.

“I was pretty skeptical,” Mr. Shanks said.

Nonetheless, the archaeologists dug. And dug. They went down nearly three feet — and there they found a human toe bone more than 1,300 years old.

Passing sniff tests

What is the future of using human-remains detection dogs as a noninvasive tool in archaeology?

Some archaeologists, forensic anthropologists, geologists, scientists — and even H.R.D. dog handlers who know how challenging the work is — say they have great potential. But challenges abound.

Although researchers are learning ever more about the canine olfactory system, they are still trying to pinpoint what volatile organic compounds in human remains are significant to trained dogs.

. . .

Detection dogs also must be trained for archaeology with more consistency. Often humans are the limiting factor. Sometimes, Dr. Schoon said, she can almost see a dog thinking, “Is that all you want me to do? I can do much more!”

For the full story see:

Cat Warren. “Sniffing Out New (Old) Digs.” The New York Times (Tuesday, May 19, 2020 [sic]): D1 & D6.

(Note: ellipses added.)

(Note: the online version of the story was updated May 25, 2020 [sic], and has the title “When Cadaver Dogs Pick Up a Scent, Archaeologists Find Where to Dig.”)

The academic article documenting that dogs are able use their hypercapable noses to smell ancient human remains is:

Glavaš, Vedrana, and Andrea Pintar. “Human Remains Detection Dogs as a New Prospecting Method in Archaeology.” Journal of Archaeological Method and Theory 26, no. 3 (Sept. 2019): 1106-24.

$700 Million Deployed for Harris by an “Elusive” Expert on Randomized Clinical-Trials

“The biggest super PAC in American politics” (p. 1) is spending $700 million on ads to elect Harris, more than the combined expenditures of both the official campaign of Harris and the official campaign of Trump (p. 1). “Leading the group” (p. 19) is an “elusive” PhD named Chauncy McLean, who has “ascended in the party by displaying encyclopedic knowledge of randomized controlled-trials” (p. 19). If Harris wins will that be more due to her overwhelming advantage in funding or more due to the methods used to spend the funds? (Or will the results depend more on how much Americans remember the record of Trump compared to how much they remember the record of Biden-Harris?)

For the full story see:

Theodore Schleifer and Shane Goldmacher. “Super PAC Places $700 Million Bet On Harris’s Bid.” The New York Times, First Section (Sunday, October 20, 2024): 1 & 19.

Florence Nightingale Used Early Infographics to Improve Hospital Hygiene

(p. A15) As she tended soldiers during the Crimean War, a British nurse found herself appalled by the wretched, vermin-infested conditions at the army’s hospital in Istanbul. She began collecting figures showing the devastating effects of the filth and the dramatic benefits of the sanitary improvements she implemented. Her presentation on the need for cleaner care facilities, published in 1858, led to reforms that ultimately saved millions of lives and increased life expectancy in the U.K. Florence Nightingale, it turns out, was a pioneering data scientist.

Data, when used to reveal the value of hospital hygiene or the harm of tobacco smoke, can be a vital force for good, as Tim Harford reminds us in “The Data Detective.”

. . .

Imprecise and inconsistent definitions are one source of confusion.  . . .  . . . “infant mortality,” a key data point for public health, varies depending on the specific time in fetal development when the line is drawn between a miscarriage and a tragically premature birth.

. . .

To learn from data, it’s essential to present it well. For her analysis after the Crimean War, Florence Nightingale created one of the first infographics, using shrewdly designed diagrams to tell a memorable story. From the outset, she regarded visually compelling data displays as indispensable to making her arguments.

. . .

An authentically open mind can make a difference, Mr. Harford says, noting that the top forecasters tend to be not experts but earnest learners who constantly take in new data while challenging and refining their hypotheses. Data, Mr. Harford concludes, can illuminate and inform as well as distract and deceive. It’s often maddeningly hard to know the difference, but it would be unforgivable not to try.

For the full review see:

David A. Shaywitz. “Bookshelf; Broadly Informed, Easily Misled.” The Wall Street Journal (Friday, Jan. 29, 2021 [sic]): A15.

(Note: ellipses added.)

(Note: the online version of the review has the date January 28, 2021 [sic], and has the title “Bookshelf; ‘The Data Detective’ Review: Broadly Informed, Easily Misled.”)

The book under review is:

Harford, Tim. The Data Detective: Ten Easy Rules to Make Sense of Statistics. New York: Riverhead Books, 2021.

Sometimes Indigenous People Know More Than Credentialed Scientists

(p. D4) As a group of European botanists prepared to travel across Borneo by motorboat and four-wheel-drive vehicles, they heard about a species of palm with an extremely rare quirk.

It flowers underground.

The palm, Pinanga subterranea, is one of 74 plants that scientists from the Royal Botanic Gardens, Kew, in London named as new to science last year, thrilling some in the botany world. The botanists who went plant-hunting in Southeast Asia six years ago were not expecting to find it.

But the plant is not hard to find: It grows abundantly on Borneo, the third-largest island in the world, which includes parts of Indonesia and Malaysia.

. . .

. . ., the “discovery” of Pinanga subterranea is an example of conventional science catching up with Indigenous knowledge.

“We have described this as new to science,” said William J. Baker, the most senior scientist on the trip. “But the preexisting knowledge about this palm is layered, and was already there before we even got anywhere near it.”

Over the past 30 years, non-Indigenous scientists have turned more to Indigenous knowledge to expand or test their research, with varying degrees of sensitivity.

. . .

There have been a number of collaborative studies that credit Indigenous communities with having generations of wisdom on topics that include shellfish productivity, grizzly bear management and raptor behavior. In some cases the communities lead or participate in the research.

For the full story see:

Mike Ives and Hasya Nindita. “‘New to Science’ Plant Wasn’t Such a Secret.” The New York Times (Tuesday, January 30, 2024): D4.

(Note: ellipses added.)

(Note: the online version of the story has the date Jan. 20, 2024, and has the title “A Plant That Flowers Underground Is New to Science, but Not to Borneo.”)

Facing Death in a Seaplane Accident, Bertrand Russell’s Thoughts Were Not Philosophical: “I Thought the Water Was Cold”

For a year or two in grad school at Chicago, I was a member of a Bertrand Russell book club. I didn’t like Russell’s politics, but I did like his down-to-earth clarity, his sense of humor, and his optimistic defense of secular humanism.

(p. 10) “I am human, and consider nothing human alien to me”: The famous line from the Roman playwright Terence, written more than two millenniums ago, is easy to assert but hard to live by, at least with any consistency. The attitude it suggests is adamantly open-minded and resolutely pluralist: Even the most annoying, the most confounding, the most atrocious example of anyone’s behavior is necessarily part of the human experience. There are points of connection between all of us weirdos, no matter how different we are. Michel de Montaigne liked the line so much that he had the Latin original — Homo sum, humani nihil a me alienum puto — inscribed on a ceiling joist in his library.

. . .

Humanism, . . ., has always had to negotiate between noble ideals of humanity and the peculiarities of actual humans. Paradox and ambiguity aren’t to be rejected but embraced. “Dispute and contradiction, not veneration and obedience, are the essence of intellectual life,” Bakewell writes.

. . .

. . ., Bakewell practices what she preaches — or, since preaching would be anathema to a humanist, she does what she suggests. She puts her entire self into this book, linking philosophical reflections with vibrant anecdotes. She delights in the paradoxical and the particular, reminding us that every human being contains multitudes.

This can lead her to some wonderful asides.  . . .  When Bertrand Russell was in a seaplane accident in Norway and a journalist called him afterward to ask whether his brush with death had led him to think about such high-flown concepts as mysticism and logic, he said no, it had not. “I thought the water was cold.”

For the full review see:

Jennifer Szalai. “Oh, the Humanity.” The New York Times Book Review (Sunday, April 16, 2023 [sic]): 10.

(Note: ellipses added.)

(Note: the online version of the review has the date March 29, 2023 [sic], and has the title “The Tricky Thing With Humanism, This Book Implies, Is Humans.” In the original, the Latin phrase in the first quoted paragraph is in italics.)

The book under review is:

Bakewell, Sarah. Humanly Possible: Seven Hundred Years of Humanist Freethinking, Inquiry, and Hope. New York: Penguin Press, 2023.

Policy Reform, Such as Smaller Research Teams, Needed for Faster Big Breakthroughs

(p. D3) Miracle vaccines. Videophones in our pockets. Reusable rockets. Our technological bounty and its related blur of scientific progress seem undeniable and unsurpassed. Yet analysts now report that the overall pace of real breakthroughs has fallen dramatically over the past almost three-quarters of a century.

This month in the journal Nature, the report’s researchers told how their study of millions of scientific papers and patents shows that investigators and inventors have made relatively few breakthroughs and innovations compared with the world’s growing mountain of science and technology research. The three analysts found a steady drop from 1945 through 2010 in disruptive finds as a share of the booming venture, suggesting that scientists today are more likely to push ahead incrementally than to make intellectual leaps.

“We should be in a golden age of new discoveries and innovations,” said Michael Park, an author of the paper and a doctoral candidate in entrepreneurship and strategic management at the University of Minnesota.

. . .

The new method looks at citations more deeply to separate everyday work from true breakthroughs more effectively. It tallies citations not only to the analyzed piece of research but to the previous studies it cites. It turns out that the previous work is cited far more often if the finding is routine rather than groundbreaking. The analytic method turns that difference into a new lens on the scientific enterprise.

The measure is called the CD index after its scale, which goes from consolidating to disrupting the body of existing knowledge.

Dr. Funk, who helped to devise the CD index, said the new study was so computationally intense that the team at times used supercomputers to crunch the millions of data sets. “It took a month or so,” he said. “This kind of thing wasn’t possible a decade ago. It’s just now coming within reach.”

The novel technique has aided other investigators, such as Dr. Wang. In 2019, he and his colleagues reported that small teams are more innovative than large ones. The finding was timely because science teams over the decades have shifted in makeup to ever-larger groups of collaborators.

In an interview, James A. Evans, a University of Chicago sociologist who was a co-author of that paper with Dr. Wang, called the new method elegant. “It came up with something important,” he said. Its application to science as a whole, he added, suggests not only a drop in the return on investment but a growing need for policy reform.

“We have extremely ordered science,” Dr. Evans said. “We bet with confidence on where we invest our money. But we’re not betting on fundamentally new things that have the potential to be disruptive. This paper suggests we need a little less order and a bit more chaos.”

For the full story see:

William J. Broad. “What Happened to All of Science’s Big Breakthroughs?” The New York Times (Tuesday, January 24, 2023 [sic]): D3.

(Note: ellipses added.)

(Note: the online version of the story has the date Jan. 17, 2023 [sic], and has the same title as the print version.)

For Nature paper mostly discussed in the passages quoted above is:

Park, Michael, Erin Leahey, and Russell J. Funk. “Papers and Patents Are Becoming Less Disruptive over Time.” Nature 613, no. 7942 (Jan. 2023): 138-44.

The paper on team size, and co-authored by Wang, is:

Wu, Lingfei, Dashun Wang, and James A. Evans. “Large Teams Develop and Small Teams Disrupt Science and Technology.” Nature 566, no. 7744 (Feb. 2019): 378-82.

Regulations Slow the Creation and Adoption of Healthcare Breakthroughs

CPR is “cardiopulmonary resuscitation.” ECPR is “extracorporeal CPR.” The ATTEST randomized double-blind clinical trial (RCT) provided dramatic evidence of the efficacy of ECPR. But the INCEPTION RCT seemed to provide equally strong evidence of a lack of efficacy. The key difference is the high level of experience and dedication of those implementing the ATTEST RCT, and the lack of experience, and likely lower dedication of those in the INCEPTION RCT. Dr. Demetris Yannopoulos has improved his techniques through trial and error, probably in some ways that he can articulate and in other ways that are harder to articulate. Gary Klein with his naturalistic decision-making research, writes that experience gives emergency workers a quick “recognition” of what needs to be done in different situations.

At what point in the development of a therapy do you perform the canonical RCT? In the case of Emil Freireich’s four drug chemo-cocktail for curing childhood leukemia, he continually improved the ingredients and doses of the cocktail. If an RCT had been performed too early in that process, the result would have been a lack of efficacy, and a therapy would have been abandoned that had the potential to be developed into a useful efficacious therapy. Ditto for Vince DeVita’s development of his chemo-cocktail for curing Hodgkin’s Lymphoma. Ditto also for the development of the drug that eventually proved efficacious in the For Blood and Money book, where Stanford cancer doctor and Pharmacyclics co-founder acquired and developed cancer therapy Imbruvica, but abandoned it after an RCT of it failed. But Miller was ousted by major Pharmacyclics stock-holder, and entrepreneurial non-scientist, Bob Duggan, who did not want to give up on Imbruvica. Duggan persevered, overseeing its further development, until a later RCT was performed that proved efficacy.

In an earlier entry, I documented a much simpler and cheaper CPR innovation that also promises to improve heart failure therapy, called “neuroprotective CPR” (NCPR). Which one, if either, of ECPR or NCPR should we endorse? Ideally, in a fully function medical marketplace, we could comfortably say: “let the market decide.” Entrepreneurial scientists and physicians could develop the therapies and see how many willing patients would be willing to pay for each. Maybe the more expensive ECPR therapy would initially only be bought by the better-off. But as Yannopoulos improves it, as he is already working to do, making it simpler and cheaper, it would eventually be appealing to a broader customers. In Openness, I claim that this is the common path of a great many breakthrough innovations in areas outside of medicine.

Notice that the ECPR was heavily funded by the Helmsley Trust, a private foundation. This is consistent with my claim that medical innovation benefits from a diversity of funding sources, especially of private funding sources that are more likely to fund a diversity of methods and to take chances with heterodox ideas, partly motivated by private funders’ greater mission-orientation due to having more ‘skin-in-the-game.’

Notice also that Yannopoulos’s implementation of ECPR was constrained by a scarcity of trained personnel. Yannopoulos could not act as a nimble entrepreneur because massive regulations limit nimble entrepreneurship in healthcare. This is especially try on labor market issues where massive labor market regulations pile on top of massive healthcare regulations. Breakthrough innovations are usually implemented by small nimble start-ups. To create Disneyland, Walt Disney created WED Enterprises, instead of try to created it with the large incumbent The Walt Disney Company. Jonathan Bush tried nimble labor market innovation in healthcare, but was stymied by regulations. So in the ECPR case, Yannopoulos had the beds to care for more cardiac arrest patients, but could not fill those rooms because of a lack of trained healthcare workers. He could not simply offer higher pay. He was part of a larger organization where he had limited decision-rights that reduced his nimble control. (On the importance of decision-rights, see Koch 2007.)

(p. 27) In reality, by the time a patient without a pulse arrives in the E.R., we know what the outcome is going to be. We continue CPR and shock the patient if we can. We insert a breathing tube and connect it to a ventilator. We inject medications: adrenaline, heart-rhythm drugs. But these treatments almost always fail.

. . .

Demetris Yannopoulos, an interventional cardiologist and professor at the University of Minnesota Medical School who created its Center for Resuscitation Medicine, refused to accept that this was the best doctors could do. In 2014, he began performing ECPR, a treatment that was starting to catch on in a few places, mostly in Asia and Europe. To his surprise, patients he didn’t expect to survive ended up doing well.  . . .

When a patient in cardiac arrest is placed on an extracorporeal membrane oxygenation (ECMO) machine, as Sauer was, the treatment is called ECPR. The type of ECMO intervention used in ECPR provides full life support, which means it does the work of both lungs and heart. (Another type of ECMO, used on Covid-19 patients, helps just with breathing.) ECMO evolved from the heart-lung machines that started being used during heart surgery in the 1950s.

. . .

ECPR by itself doesn’t actually cure anything. But by providing fresh blood flow to the brain and other organs, it lets the body rest and gives doctors time to fix the underlying problem, if it’s fixable.  . . .  After patients are hooked up to ECMO, angiograms of their hearts are typically performed to determine whether they have clogged arteries — as about 85 percent do. In Sauer’s case, Yannopoulos found a blockage in his largest heart vessel, the left anterior descending artery, also known as “the widow maker.” He inserted a stent to open it back up.

. . .

(p. 28) Several years after the program started, Yannopoulos, Bartos and their team conducted the first randomized, controlled trial of ECPR. The results were published in The Lancet in 2020 as the ARREST trial.  . . .

After enrolling just 30 patients, the ARREST trial was stopped early by an N.I.H. board because the patients who got ECPR did so much better than the control-group subjects who received standard resuscitation, and it would have been unethical to continue the study. After six months, 43 percent of the 14 patients who got ECPR were alive with good brain function, compared with zero in the control group.

. . .

The Helmsley Trust gave Yannopoulos grants totaling $19.4 million, which enabled him to add this “hub and spoke” mobile component to his program: The university hospital would be the hub, and a truck and some local hospitals would be the spokes. “It was a real big bet,” Panzirer told me.

To reach patients in areas that were more suburban and rural, Yannopoulos first had to team up with surrounding health systems. Competition is more often the norm among health systems, rather than collaboration, but he persuaded his chief executive, James Hereford, to gather his counterparts from other institutions. Eventually, they were willing to work together. But they had to sort out a lot more than simply agreeing to collaborate. How would insurers pay for what they were doing? Would the initial hospital get the money, or would the university hospital? Would malpractice coverage protect doctors outside their own institutions? What about transport?

Every question could be turned into a reason for hospital administrators and lawyers to say no.

. . .

(p. 29) The economics of ECPR are in line with those of other established lifesaving interventions, like dialysis and heart transplants. And if patients don’t survive, ECPR may perfuse their bodies with enough oxygen to keep their organs eligible for donation. The program in Minnesota costs about $3.2 million a year to operate, which is covered by its revenue. This doesn’t include the start-up funding from the Helmsley Trust, however, or the significant groundwork Yannopoulos laid before that — or his personal sacrifices. “When I started, I had hair and my beard was black,” says Yannopoulos, who is mostly bald and gray. For seven years, he was not paid for his ECPR work; some years, he was on call every day. Today, he still spends about 6,500 hours on call annually. “It’s the force of his will more than anything,” Hereford says when explaining why the program has succeeded.

. . .

Yannopoulos has invited physicians from all over to visit his program; afterward, he often hears from them that replicating his work at their home institutions — getting health and E.M.S. systems to collaborate, finding institutional support and start-up funding, coordinating 24/7 staffing — seems too daunting. For these reasons, Yannopoulos regards his ECPR program as “an administrative and political achievement, rather than a scientific or technological one.”

. . .

(p. 30) The trial, called INCEPTION, compared ECPR with standard care across 10 medical centers in the Netherlands. It was the first randomized, controlled trial to look at ECPR across multiple facilities, and unlike the ARREST trial, it found that ECPR resulted in similar survival as standard treatments.  . . .

Yet there are reasons to interpret the study as saying more about the real-world challenges of developing and implementing ECPR programs than it does about the treatment itself. In the INCEPTION trial, it took roughly a half-hour longer for patients to get on an ECMO machine once they arrived at the hospital than it did in the ARREST study. Of the patients who got ECPR, 12 percent were not successfully connected to the machines, compared with zero in ARREST. Several Dutch hospitals handled only a couple of ECPR cases a year, which means they hadn’t yet acquired the right skills. “I think they were destined for failure because of that rollout, with no experience up front,” Bartos says.

Experience matters profoundly: According to a 2022 paper based on data from the Extracorporeal Life Support Organization, an international nonprofit that Robert Bartlett founded, patients treated at centers that perform fewer than 10 ECPR procedures yearly have 64 percent lower odds of survival; for every 10-case increase, the odds go up 11 percent. (The Minnesota program treats about 150 every year.)

Not only does the procedure itself require mastery, but so, too, does the care in the I.C.U. afterward — an ineffable art as much as a precise science.

. . .

(p. 45) . . . it’s not much of a surprise to hear Yannopoulos ask, “What does INCEPTION have to do with what we’re doing?” His program was carefully developed, with deep expertise, over years, to achieve the best outcomes; INCEPTION studied what would happen if a lot of hospitals started doing ECPR tomorrow.

Engineering the ideal ECPR program can feel like a maddening calculus involving experience, availability and distance — all to beat time. To treat patients faster, maybe doctors should go directly to the scene. For more than a decade, doctors in France have been doing just that, performing ECPR on the streets of Paris, in Métro stations, even on the oak parquet floors of the Louvre. Early on, Lionel Lamhaut, the head of Paris’s ECMO team, was told that he was “a cowboy to try to do something outside the hospital.” But as he and his colleagues persisted, they “started a new way of thinking.”

. . .

. . . as much money as the Helmsley Trust has given, it is not enough to overcome some of the structural limitations in the American health care system. The organization funded a multimillion-dollar expansion of the cardiovascular I.C.U. at Yannopoulos’s hospital to add 12 more spacious rooms specifically designed to accommodate patients on ECMO. But on a weekend in January when I visited, the I.C.U. was closed to new ECPR patients: Not enough nurses were available to work, so four beds in the unit were kept empty.

Even as Yannopoulos and his team hit administrative roadblocks like these, they are still trying to redefine what is medically possible. Recently, a 74-year-old man collapsed on the streets of St. Paul and went into cardiac arrest. Forty-two minutes after the first 911 call, the man was already on ECMO and had regained his pulse. Yannopoulos was optimistic about the case, given how quickly ECMO was started, even though the patient had not been shocked with a defibrillator — which meant he technically fell outside the protocol and should not have received ECPR at all. (After a week in the I.C.U., the man died when his family decided to stop all treatment.)

The man’s heart was almost certainly in pulseless electrical activity (P.E.A.), which many experts think should not be treated with ECPR. Of the three published ECPR randomized, controlled trials, only one did not limit the intervention to people with shockable rhythms. That ambitious trial, in Prague, included patients whose hearts were in the same P.E.A. pattern as the St. Paul man’s. The study was stopped early when it appeared that ECPR wasn’t saving significantly more people than standard care was. These enigmatic cases that lack shockable rhythms are vexing: When the Prague data was reanalyzed without these patients, the findings were favorable for ECPR.

Yannopoulos is undeterred by the Prague results. “You have to decide what’s more important: your survival rate” — what is often used in studies and by institutions to justify support for a program — “or the number of patients you actually save.” Because its program is now well established, Yannopoulos’s team is starting to treat patients with less promising rhythms, even though that may drive down its overall survival rate.  . . .

Yannopoulos wonders if, in a decade or perhaps less, ECPR science will still require the same specially trained teams using the same high-tech equipment — at least before patients get to the hospital. Instead, he imagines small cannulas that will be easy to place in the patient’s neck and attached to compact, simple machines that provide some blood flow to the brain. In his vision, which he is currently working to realize, medics could be trained to start people on this, and then doctors could transition them to regular ECMO once they reach the hospital. If the brain is protected, the rest of the body can eventually recover.

. . .

“There is this idea that people in cardiac arrest, you cannot harm them,” Yannopoulos says. For some doctors, that means cycling relentlessly through chest compressions and medications, so they feel as if they did everything they could. For others, it means briefly going through the motions, so they feel as if they did something. And for still others, it has always seemed kindest to do nothing at all, to let their patients die peacefully. Because almost none of them lived — no matter what the doctors did. “But now we know what is possible,” Yannopoulos says. “So if you’re not achieving that, then you are harming them in a way, right?”

For the full story see:

Helen Ouyang. “Reinventing CPR.” The New York Times Magazine (Sunday, March 31, 2024): 22-31 & 45.

(Note: ellipses added.)

(Note: the online version of the story was updated June [sic] 19, 2024, and has the title “The Race to Reinvent CPR.”)

Some references relevant to my discussion at the start of this entry are:

Bush, Jonathan, and Stephen Baker. Where Does It Hurt?: An Entrepreneur’s Guide to Fixing Health Care. New York: Portfolio, 2014.

DeVita, Vincent T., and Elizabeth DeVita-Raeburn. The Death of Cancer: After Fifty Years on the Front Lines of Medicine, a Pioneering Oncologist Reveals Why the War on Cancer Is Winnable–and How We Can Get There. New York: Sarah Crichton Books, 2015.

Diamond, Arthur M., Jr. Openness to Creative Destruction: Sustaining Innovative Dynamism. New York: Oxford University Press, 2019.

Klein, Gary A. Seeing What Others Don’t: The Remarkable Ways We Gain Insights. Philadelphia, PA: PublicAffairs, 2013.

Klein, Gary A. Sources of Power: How People Make Decisions. 20th Anniversary ed. Cambridge, MA: The MIT Press, 2017.

Klein, Gary A. Streetlights and Shadows: Searching for the Keys to Adaptive Decision Making. Cambridge, MA: The MIT Press, 2009.

Koch, Charles G. The Science of Success: How Market-Based Management Built the World’s Largest Private Company. Hoboken, NJ: Wiley & Sons, Inc., 2007.

Silberner, Joanne. “How a Plunger Improved CPR.” The New York Times (Tues., June 27, 2023): D5.

Taleb, Nassim Nicholas. Skin in the Game: Hidden Asymmetries in Daily Life. New York: Random House, 2018.

Vardi, Nathan. For Blood and Money: Billionaires, Biotech, and the Quest for a Blockbuster Drug. New York: W. W. Norton & Company, 2023.