(p. C2) . . . Katarina Begus of Birkbeck, University of London and her colleagues . . . started out exploring the origins of curiosity. When grown-ups think that they are about to learn something new, their brains exhibit a pattern of activity called a theta wave. The researchers fitted out 45 11-month-old babies with little caps covered with electrodes to record brain activity. The researchers wanted to see if the babies would also produce theta waves when they thought that they might learn something new.
The babies saw two very similar-looking people interact with a familiar toy like a rubber duck. One experimenter pointed at the toy and said, “That’s a duck.” The other just pointed at the object and instead of naming it made a noise: She said “oooh” in an uninformative way.
Then the babies saw one of the experimenters pick up an unfamiliar gadget. You would expect that the person who told you the name of the duck could also tell you about this new thing. And, sure enough, when the babies saw the informative experimenter, their brains produced theta waves, as if they expected to learn something. On the other hand, you might expect that the experimenter who didn’t tell you anything about the duck would also be unlikely to help you learn more about the new object. Indeed, the babies didn’t produce theta waves when they saw this uninformative person.
. . .
Babies leap at the chance to learn something new—and can figure out who is likely to teach them. The babies did prefer the person in their own group, but that may have reflected curiosity, not bias. They thought that someone who spoke the same language could tell them the most about the world around them.
For the full commentary see:
(Note: ellipses added.)
(Note: the online version of the commentary was updated Oct. 26, 2016 [sic], and has the same title as the print version.)
Begus’s co-authored academic paper is: