In Geology, Economic Growth Caused Scientific Progress

(p. 130) . . . , the major problem inhibiting England’s industrial development was the state of the roads. So the introduction of waterborne transportation on the new canals triggered massive economic expansion because these waterways transported coal (and other raw materials) much faster and cheaper than by packhorse or wagon. In 1793 a surveyor called William Smith was taking the first measurements in preparation for a canal that was to be built in the English county of Somerset, when he noticed something odd. (p. 131) Certain types of rock seemed to lie in levels that reappeared, from time to time, as the rock layer dipped below the surface and then re-emerged across a stretch of countryside. During a journey to the north of England (to collect more information about canal-construction techniques), Smith saw this phenomenon happening everywhere. There were obviously regular layers of rock beneath the surface which were revealed as strata where a cliff face of a valley cut into them. In 1796 Smith discovered that the same strata always had the same fossils embedded in them. In 1815, after ten years of work, he compiled all that he had learned about stratification in the first proper colored geological map, showing twenty-one sedimentary layers. Smith’s map galvanized the world of fossil-hunting.

Source:
Burke, James. The Pinball Effect: How Renaissance Water Gardens Made the Carburetor Possible – and Other Journeys. Boston: Back Bay Books, 1997.
(Note: ellipsis added.)

Christian Care “Replaced Roman Hygiene with Frequent Prayers and Infrequent Baths”

Hager discusses the medical practices of Paris’ Hôtel Dieu lying-in maternity hospital in the 17th century, that led to widespread, and often fatal, childbed fever:

(p. 114) Every day the senior doctors would arrive on their rounds followed closely by a gaggle of students. They would pull the women’s covers down, pass hands over their abdomens, point, prod, and discuss. Although the physicians’ wigs were carefully powdered, their hands were generally unwashed. Christian care, which emphasized purity of the soul over that of the body, had replaced Roman hygiene with frequent prayers and infrequent baths. In Paris the privies and slaughterhouses (as well as the hospital wards of the Hôtel Dieu) dumped their waste into the Seine, then drew drinking and washing water from the same source. Bedding was washed infrequently. Lice and fleas abounded.

Source:
Hager, Thomas. The Demon under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor’s Heroic Search for the World’s First Miracle Drug. New York: Three Rivers Press, 2007.

Industrialist Duisberg Made Domagk’s Sulfa Discovery Possible

(p. 65) . . . Domagk’s future would be determined not only by his desire to stop disease but also by his own ambition, his family needs, and the plans of a small group of businessmen he had never met. He probably had heard of their leader, however, one of the preeminent figures in German business, a man the London Times would later eulogize as “the greatest industrialist the world has yet had.” His name was Carl Duisberg.

Duisberg was a German version of Thomas Edison, Henry Ford, and John D. Rockefeller rolled into one. He had built an empire of science in Germany, leveraging the discoveries of dozens of chemists he employed into one of the most profitable businesses on earth. He knew how industrial science worked: He was himself a chemist. At least he had been long ago. Now, in the mid-1920s, in the twilight of his years, his fortunes made, his reputation assured, he often walked in his private park alone—still solidly built, with his shaved head and a bristling white mustache, still a commanding presence in his top hat and black overcoat—through acres of forest, fountains, classical statuary, around the pond in his full-scale Japanese garden by the lacquered teahouse, over his steams, and across his lawns.

Source:
Hager, Thomas. The Demon under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor’s Heroic Search for the World’s First Miracle Drug. New York: Three Rivers Press, 2007.
(Note: ellipsis added.)

How to Run a Business in Nebraska

DeathOfAGunfighterBK.jpg

Source of book image: online version of the WSJ book review quoted and cited below.

(p. A15) How exactly did Jack get to be so wild? It appears — and even the redoubtable Mr. Rottenberg acknowledges that the documentation is often sparse — that Jack got into the freight-hauling business and one thing led to another, including stage coaching, supervising the mails and helping to run the Pony Express. In his heyday, Slade was the boss of the Express’s fabled Sweetwater division, said to be the most dangerous stretch of the overland route, from Nebraska to Salt Lake City, 500 hard miles of hard country, hard men, hard weather and unfriendly Indians. One chronicler noted about Slade that “from Fort Kearney, west, he was feared a great deal more than the Almighty.”

Freight hauling was not the space program. A man could get into this line of work easily if he had the physical stamina and the nerve. But it was dangerous work. A man might run into some rough customers. Perhaps the most celebrated of these, in Slade’s case, was an ornery French-Canadian named Jules Beni, with whom he had a long-standing feud. Jules eventually shot Slade, in 1860, riddling him with bullets and leaving him for dead. But Slade was made of tougher stuff and would settle the score. A year later he killed Beni and carried the dead man’s ears around as a souvenir, pulling them out for display from time to time to the alarm of fellow saloon patrons. A previous account of Slade’s life was in fact titled “An Ear in His Pocket.” Now that’s a bad man!

For the full review, see:
CHRISTOPHER CORBETT. “BOOKShelf; A Desperado Rides Again.” The Wall Street Journal (Tues., NOVEMBER 11, 2008): A15.

Reference to the book being reviewed:
Rottenberg, Dan. Death of a Gunfighter. Westholme Publishing, 2008.

A True Christmas Story of Hope and Justice

DomagkGerhard.jpg

Gerhard Domagk. Source of photo: http://www.nndb.com/people/744/000128360/

Gerhard Domagk spent most of his adult life in a focused, tireless effort to find the first cure for a bacterial infection. Finally, his laboratory discovered a sulfa drug they called “Prontosil,” that seemed effective against strep and some other infections. Domagk published his first preliminary results on the drug in February 1935 (see Hager, p. 164). An increasing number of doctors began testing the drug on their desperate patients.
Life is not always unfair:

(p. 181) In early December 1935, just after the French published the discovery that pure sulfa was the active ingredient in Prontosil, Domagk’s six-year-old daughter, Hildegarde, suffered a bad accident. She was making a Christmas decoration in their house when she decided that she needed help threading a needle. She was on her way downstairs to find her mother, carrying the needle and thread, when she fell. The needle was driven into her hand blunt end first, breaking off against a carpal bone. She was taken to the local clinic and the needle was surgically removed, but a few days later, her hand started swelling. After the stitches were removed, her temperature rose and kept rising. An abscess formed at the surgical site. She had a wound infection. The staff at the clinic tried opening and draining the abscess. When it became reinfected, they opened it again. Then again. The infection started moving up her arm. “Her general state and the abscess worsened to such a point that we became seriously concerned,” Domagk wrote later. “More surgery was impossible.” She was falling in and out of consciousness. The surgeons were talking about amputating her arm. Once the blood tests showed that the invading germ was strep, Domagk went to his laboratory and pocketed a supply of Prontosil tablets, returned to her hospital room, put the red tablets in her mouth himself, and made certain that she swallowed. Then he waited. A day later her temperature continued to rise. He gave her more tablets. No improvement. On day (p. 182) three he gave her more, a large dose, but there was still no improvement. Her situation was growing desperate, so he pulled out all the stops, on day four giving her more Prontosil tablets, then two large injections of Prontosil soluble. Finally her temperature started to drop. He gave her more tablets. After a week of treatment, her temperature finally returned to normal. The infection had been stopped. By Christmas she was able to celebrate the holidays with her family.

Source:
Hager, Thomas. The Demon under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor’s Heroic Search for the World’s First Miracle Drug. New York: Three Rivers Press, 2007.

Most Scientists’ Lives Are “Like Those of Anxious Middle Managers”

(p. 64) The truth is that scientists come in all types, just like everyone else. They are people, not pop paradigms. They worry about how they are going to pay their bills, and they get envious of the researchers who got the credit they should have gotten. They compete for grants and complain when those grants are awarded to someone else. They focus on prestige and work for advancement and usually do what their bosses (or, less directly, granting agencies) say. Most scientists, as the great British molecular biologist J. D. Bernal noted back in the 1930s, live lives more like those of anxious middle managers than great visionaries.

Source:
Hager, Thomas. The Demon under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor’s Heroic Search for the World’s First Miracle Drug. New York: Three Rivers Press, 2007.

Resilience is Key to Surviving Disasters (and to Successful Entrepreneurship)

I believe that resilience is a key characteristic of successful entrepreneurs. Amanda Ripley has some plausible and useful comments on resilience in the passages quoted below.

(p. 91) Resilience is a precious skill. People who have it tend to also have three underlying advantages: a belief that they can influence life events; a tendency to find meaningful purpose in life’s turmoil; and a conviction that they can learn from both positive and negative experiences. These beliefs act as a sort of buffer, cushioning the blow of any given disaster. Dangers seem more manageable to these people, and they perform better as a result.    . . .

. . .    A healthy, proactive worldview should logically lead to resilience. But it’s the kind of unsatisfying answer that begs another question. If this worldview leads to resilience, well what leads to the worldview?

(p. 92) The answer is not what we might expect. Resilient people aren’t necessarily yoga-practicing Buddhists. One thing that they have in abundance is confidence. As we saw in the chapter on fear, confidence—that comes from realistic rehearsal or even laughter—soothes the more disruptive effects of extreme fear. A few recent studies have found that people who are unrealistically confident tend to fare spectacularly well in disasters. Psychologists call these people “self-enhancers,” but you and I would probably call them arrogant. These are people who think more highly of themselves than other people think of them. They tend to come off as annoying and self-absorbed. In a way, they might be better adapted to crises than they are to real life.

Source:
Ripley, Amanda. The Unthinkable: Who Survives When Disaster Strikes – and Why. New York: Crown Publishers, 2008.
(Note: ellipses added.)

James Burke (and Art Diamond) on the Importance of Serendipity

PinballEffectBK.jpg

Source of book image: http://www.hachettebookgroup.com/_images/ISBNCovers/Covers_Enlarged/9780316116107_388X586.jpg

Like other James Burke books, The Pinball Effect is a good source of interesting and thought-provoking stories and examples, usually related to science and technology. One of his themes in the book is the importance of serendipity in making unanticipated connections.

My (and not Burkes’) musings on serendipity:

Serendipity might be an example of Hayek’s local knowledge, that the free market encourages the entrepreneur to take advantage of. Serendipity is an occurrence of one person in a particular time and place, with a mind prepared to be alert for it. As such it could not be planned by a central authority, and would usually be vetoed by a committee decision process. To maximally benefit from serendipity, we need a system that allows the motivated individual to pursue their discoveries.

Burke’s musings on serendipity:

(p. 3) In every case, the journeys presented here follow unexpected paths, because that’s how life happens. We strike out on a course only to find it altered by the action of another person, somewhere else in time and space. As a result, the world in which we live today is the end-product of millions of these kinds of serendipitous interactions, happening over thousands of years.

Source:
Burke, James. The Pinball Effect: How Renaissance Water Gardens Made the Carburetor Possible – and Other Journeys. Boston: Back Bay Books, 1997.

Deaths in ‘Natural’ Disasters Caused by Absence of Economic Growth

We are often made to feel guilty for the suffering of other countries in “natural” disasters. But the deaths are more due to the lack of infrastructure, sound buildings and the like, which in turn are due to the countries’ lack of economic growth, which in turn is due to their rejection of the process of capitalist creative destruction.

(p. 90) The simple truth is that money matters more than anything else in most disasters. Which is another way of saying that where and how we live matters more than Mother Nature. Developed nations experience just as many natural disasters as undeveloped nations. The difference is in the death toll. Of all the people who dies from natural disasters on the planet from 1985 to 1999, 65 percent came from nations with incomes below $760 per capita, according to the Intergovernmental Panel on Climate Change. The 1994 Northridge earthquake in California, for example, was similar in magnitude and depth to the 2005 earthquake in Pakistan. But the Northridge earthquake killed only sixty-three people. The Pakistan earthquake killed about a hundred thousand.

People need roofs, roads, and health care before quibbles like personality and risk perception count for much. And the effect is geometric. If a large nation raises its GNP from $2,000 to $14,000 per person, it can expect to save 530 lives a a year in natural disasters, according to a study by Matthew Kahn at Tufts University. And for those who survive, money is a form of liquid resilience: it can bring treatment, stability, and recovery.

Source:
Ripley, Amanda. The Unthinkable: Who Survives When Disaster Strikes – and Why. New York: Crown Publishers, 2008.

Regular Citizens Perform Vast Majority of Disaster Rescues

UnthinkableBK.jpg

Source of book image: http://www.cleveland.com/arts/index.ssf/2008/06/the_book_the_unthinkable_expla.html

The most important message of this book is a very important message indeed. That message is that overwhelmingly, disaster survival and rescue depends on the actions of regular people, not the actions of professional lifesavers. (Very often, the professionals cannot get there quickly enough, or in sufficient numbers, to get the job done.)
This message, is itself worth the price of the book—if it were sufficiently understood, it would have enormous implications for individual preparedness, and government policy. (Think about the implications, for instance, for whether individual regular people should be allowed to carry guns.)

(p. xiii) These days, we tend to think of disasters as acts of God and government. Regular people only feature into the equation as victims, which is a shame. Because regular people are the most important people at a disaster scene, every time.

In 1992, a series of sewer explosions caused by a gas leak ripped through Guadalajara, Mexico’s second largest city. The violence came from below, rupturing neighborhoods block by block. Starting at 10:30 A.M., at least nine separate explosions ripped open a jagged trench more than a mile long. About three hundred people died. Some five thousand houses were razed. The Mexican Army was called in. Rescuers from California raced to help. Search-and-rescue dogs were ordered up.
But first, before anyone else, regular people were on the scene saving one another. They did incredible things, these regular people. They lifted rubble off survivors with car jacks. They used garden hoses to force air into voids where people were trapped. In fact, as in most disasters, the vast majority of rescues were done by ordinary folks. After the first two hours, very few people came out of the debris alive. The search and rescue dogs did not arrive until twenty-six hours after the explosion.

Source:
Ripley, Amanda. The Unthinkable: Who Survives When Disaster Strikes – and Why. New York: Crown Publishers, 2008.

Amateur Leeuwenhoek Made Huge Contribution to Science

(p. 40) Antoni van Leeuwenhoek was a scientific superstar. The greats of Europe traveled from afar to see him and witness his wonders. It was (p. 41) not just the leading minds of the era—Descartes, Spinoza, Leibnitz, and Christopher Wren—but also royalty, the prince of Liechtenstein and Queen Mary, wife of William III of Orange. Peter the great of Russia took van Leeuwenhoek for an afternoon sail on his yacht. Emperor Charles of Spain planned to visit as well but was prevented by a strong eastern storm.

It was nothing that the Dutch businessman had ever expected. He came from an unknown family, had scant education, earned no university degrees, never traveled far from Delft, and knew no language other than Dutch. At age twelve he had been apprenticed to a linen draper, learned the trade, then started his own business as a fabric merchant when he came of age, making ends meet by taking on additional work as a surveyor, wine assayer, and minor city official. He picked up a skill at lens grinding along the way, a sort of hobby he used to make magnifying glasses so he could better see the quality of fabrics he bought and sold. At some point he got hold of a copy of Micrographia, a curious and very popular book by the British scientist Robert Hooke. Filled with illustrations, Micrographia showed what Hooke had sen through a novel instrument made of two properly ground and arranged lenses, called a “microscope.”  . . .   Micrographia was an international bestseller in its day. Samuel Pepys stayed up until 2:00 A.M. one night poring over it, then told his friends it was “the most ingenious book that I ever read in my life.”

Van Leeuwenhoek, too was fascinated. He tried making his own microscopes and, as it turned out, had talent as a lens grinder. His lens were better than anyone’s in Delft; better than any Hooke had access to; better, it seemed, than any in the world.  . . .  

(p. 42) Then, in the summer of 1675, he looked deep within a drop of water from a barrel outside and became the first human to see an entirely new world. In that drop he could make out a living menagerie of heretofore invisible animals darting, squirming, and spinning.

Source:
Hager, Thomas. The Demon under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor’s Heroic Search for the World’s First Miracle Drug. New York: Three Rivers Press, 2007.
(Note: ellipses added.)

The example above is consistent with Baumol’s hypotheses about formal education mattering less, in the initial stages of great discoveries. (And maybe even being a hindrance).
See:
Baumol, William J. “Education for Innovation: Entrepreneurial Breakthroughs Versus Corporate Incremental Improvements.” In Innovation Policy and the Economy, edited by Adam B. Jaffe, Josh Lerner and Scott Stern, 33-56. Cambridge, Mass.: MIT Press, 2005.

The example is also consistent with Terence Kealey’s claim that important science can often arise as a side-effect of the pursuit of business activity.
See:
Kealey, Terence. The Economic Laws of Scientific Research. New York: St. Martin’s Press, 1996.