Kroc Increased the Mortgage on His Home to Regain Control of His First Entrepreneurial Venture

Ray Kroc was the founder of the McDonald’s chain, who wrote an autobiography called Grinding It Out. Back on August 12, 2009, I made a few comments on the book, and said that in some future entries, I would be quoting a few passages that I thought were worth remembering.
Well, the future has finally arrived.
Kroc’s first entrepreneurial venture was Multimixer, a machine that efficiently made milkshakes. Kroc had sold a controlling interest, and wanted control back:

(p. 56) “All right,” I said, “how much?”

I don’t know how he kept from choking on his own bile as he mouthed the figure: “Sixty-eight thousand dollars.”
That’s all I remember of our conversation. I’m sure I said something. But I was so benumbed by his outrageous demand that I couldn’t think straight. To add acid to the irony, he wanted the whole thing in cash. Of course, I didn’t have that kind of (p. 57) money. So what we worked out was the culmination of the devilish deal he had tied me to. I had to agree to pay him $12,000 cash. The balance was to be paid off over five years, plus interest. My salary had to remain at the same level and my expenses in the same range. So, in fact, what I was doing was paying him the profits of my company.
I didn’t know where in the hell I was going to raise the money, but I had made up my mind to do it. In the end, most of the cash came from my new home in Arlington Heights. I managed to get an increase in the mortgage, much to Ethel’s dismay. Her apprehensions about my becoming Mr. Multimixer had been laid to rest at this point, and I don’t think she ever got over the shock of discovering that we were nearly $100,000 in debt. She couldn’t seem to handle it.
For me, this was the first phase of grinding it out— building my personal monument to capitalism. I paid tribute, in the feudal sense, for many years before I was able to rise with McDonald’s on the foundation I had laid.

Source:
Kroc, Ray. Grinding It Out: The Making of McDonald’s. Chicago: Henry Regnary Company, 1977.

Venture Capitalists Invested 37% Less in Start-Ups in 2009

(p. B5) Venture capitalists, whose money provides fuel to technology start-ups, last year invested the lowest amount in such companies since 1997, according to a report from PricewaterhouseCoopers and the National Venture Capital Association released on Friday.
. . .
In 2009, venture capitalists invested $17.7 billion in 2,795 start-ups — 37 percent less cash and 30 percent fewer deals than in 2008. Internet companies, which have excited investors for more than a decade, took a big hit as investment declined 39 percent.

For the full story, see:
CLAIRE CAIN MILLER. “Venture Capital Was Tight for Tech Start-Ups in ’09.” The New York Times (Fri., January 22, 2010): B5.
(Note: ellipsis added.)

Entrepreneur Kurzweil Brought Sunshine to Stevie Wonder’s Life

(p. 265) On the snowy morning of January 13, 1976, . . . , there was unusual traffic on Rogers Street. Outside the gray one-story buildings with their clouded tilt-out windows, vans from various television channels maneuvered to park. A man from the National Federation of the Blind struggled over a snow bank onto the sidewalk and began tapping earnestly to get his bearings. A dark-haired young man set out on a three-block trek to the nearest vendor of coffee and donuts for the gathering media. In the room at number 68, two engineers poked at a gray box that looked like a mimeograph machine sprouting wires to a Digital Equipment Corporation computer. Several intense young men in their early twenties debated when to begin a demonstration of the device. The short, curly-haired leader of the group, twenty-seven-year-old Raymond Kurzweil, refused to start until the arrival of a reporter from The New York Times.

The event was a press conference announcing the first breakthrough product in the field of artificial intelligence: a reader for the blind. Described as an “omnifont character recognition device” linked to a synthetic voice, the machine could read nearly any kind of book or document laid face down on its glass lens. With a learning faculty that improved the device’s performance as it proceeded through blurred, faded, or otherwise illegible print, the machine solved problems of pattern recognition and synthesis that had long confounded IBM, Xerox, and the Japanese conglomerates, as well as thousands of university researchers.

. . .
(p. 266) Stevie Wonder, the great blind musician, called. He had heard about the device after its appearance on the “Today Show” and it seemed a lifelong dream come true. He headed up to Cambridge to meet with Kurzweil.

. . .
As Kurzweil remembers, “He was very excited about it and wanted (p. 267) one right away, so we actually turned the factory upside down and produced a unit that day. We showed him how to hook it up himself. He left with it practically under his arm. I understand he took it straight to his hotel room, set it up. and read all night.” As Wonder said, the technology has been “a brother and a friend . . . . without question, another sunshine of my life.” Wonder stayed in touch with Kurzweil over the years and would play a key role in conceiving and launching a second major Kurzweil product.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.
(Note: italics in original; all ellipses added except the ellipsis internal to the last paragraph, which was in the original.)

Self-Financing was Key to Chips & Technology’s Survival

At a key juncture, Gordon Campbell’s self-financing was essential to the survival of his Chips & Technology firm. Chips & Technology produced the chip technology that was the foundation of the clones of the IBM AT (286) PCs. And Chips & Technology turned out to be profitable after one year.

(p. 228) Campbell remembered the words of Nolan Bushnell: “You are not a real entrepreneur until you’ve got to meet a payroll from your own bank account.” There was truth in those words. There was a sense in which Gordon Campbell was still real a real entrepreneur.

If you are a real entrepreneurial hero, you do not get your start by rolling out of bed one morning in rumpled pajamas to answer the telephone at Oakmead Plaza and find that it’s the man from Kleiner-Perkins announcing you’ve won the lottery (for spinning out of Intel with Dr. Salsbury and the rest). Real entrepreneurs do not usually become paper millionaires and Ferrari corsairs in a public offering without ever experiencing the warm sensation of a profitable year. Raphael Klein had put up his house to save Xicor; he was an entrepreneur. In the desperate silicon panic of the summer of 1985, Gordy Campbell too was going to join the club.

The venture capitalists were all waiting for Campbell to fail. He had no chance of money from them. But other sources would also be difficult. Campbell had been careful to buy no real assets and channel all his money into intellectual capital. Morris Jones’s Amdahl 470–a powerful mainframe that ran the company’s CAE programs—was a second-hand machine, leased by the month. The rest of their CAD and CAE equipment was either designed by Jones and his team. including two defectors from Silicon Compilers, or it consisted of various IBM workstations. The company’s most valuable asset, beyond its ideas, was a compaction algorithm that Jones had developed from a Bell Labs model. It allowed the scaling down of CMOS technology into difficult non-linear volt warps near 1-micron geometries. Couldn’t mortgage that at a bank.

Campbell could scarcely believe what was happening to him. There was nothing to do but use his own personal money to keep the company afloat. But if the truth be known, his personal funds were running a bit low. It was out of the question, of course, to sell the Ferrari. He could hardly putter forth onto Route 280 and down toward Sand Hill Road like a beggar with some tin cup from Toyota. Campbell’s other wealth, though, was mostly in SEEQ stock that was then selling at $2 per share and going down.

Campbell would have to sell at the very bottom of the market and use his own last personal wealth to finance a company with no revenues and a burn rate of some $4,000 a day. He gasped and did it. He went through a couple of cliff-hanging months, with shortened fin-(p. 229)gernails. But the act of personal sacrifice was catalytic. Within a few weeks, several of the employees and other friends also put up some money, including $200,000 from his financial officer, Gary Martin. Before the year was our he had raised another indispensable $1.5 million from a number of companies in Japan, including Kyocera, Mitsui, Yamaha, and Ascii, Kay Nishi’s PC software firm that represented Chips in Asia. By July, the IBM graphics enhancement chip set was finished and Chips & Technologies was a company almost fully owned and controlled by its employees.

By July 1986, when the chip set for the IBM AT computer was finished, most of the world had decided that the AT would be the next major personal computer standard. In the United States, Tandy, PC’s Limited (now Dell), and several other then unknown manufacturers bought the Chips & Technologies set. Tandy became the leading AT compatible producer, assembling the computers in a factory in Fort Worth manned by immigrants from twenty countries led by an immigrant from Japan. Among the purchasers of the Chips set in Europe were Olivetti, Apricot, Siemens, and Bull. Nishi signed up NEC, Sony, Epson, and Mitsubishi in Japan; Goldstar, Samsung, Daewoo, and Hyundai in Korea; a number of companies in Taiwan; and the Great Wall Computer Company of China. Most of these firms –plus Compaq and a slew of producers of IBM add-in graphics gear–also were buying the graphics enhancement chip set.

At the outset. Campbell had boldly predicted profitability in a year and a half: In fact, the firm was profitable by the last quarter of the first year.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.

50 Venture Capital Firms Turned Down Campbell’s Chips & Technology

(p. 224) Campbell’s idea for a company was to use a silicon compiler to put those boards into custom silicon and to provide a means by which scores of companies could produce AT clones faster, cheaper, better, and more reliable than IBM’s.

Campbell drew up his business plan and brought it to some fifty venture capitalists. A moneyed yawn issued from Sand Hill Road, echoed down the canyons of San Francisco’s financial district, and reechoed through downtown Manhattan. A jaded group that had funded some forty very hard disk projects and some fifty rather floppy computer firms within the previous two years, venture capitalists eyed Campbell’s boyish manner and lightweight look and they contemplated his business plan (a personal computer chip project during a PC and semiconductor depression), and they identified the heart of his overall strategy (compete with IBM). They rolled the firm’s proposed name over their tongues: Chips & Technologies. Wouldn’t Microtech be better? Then they laughed nervously. Not this time, Gordy.
Finally, Campbell found a friend: Bill Marocco, who had built the SEEQ headquarters, and had once offered to support a future project. Marocco put up $1 million, and Chips & Technologies was off the ground.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.

Entrepreneur Gordon Campbell Was an Uncredentialed “Complex Man”

(p. 222) Among the entrepreneurs of the microcosm, none were nimbler than Gordon Campbell, the former founder and president of SEEQ. Taking Phillip Salsbury and other non-volatile memory stars out of (p. 223) Intel in 1981, Campbell had begun meteorically. But after a few years, SEEQ’s E-square technology had slipped against Xicor and the industry went into its mid-eighties slump. While many experts bogged down in the problems of transition, however, Campbell seized the opportunities. In a new firm, he would demonstrate beyond cavil the new balance of power in electronics.

He left SEEQ in 1984 and at once steered his Ferrari back into the semiconductor fray. But few observers favored his prospects. If the truth be known, many semiconductor people thought they had already seen plenty of Gordon Campbell, company president.
Campbell is a complex man, with a rich fund of ego and a boyish look that belies his shrewd sense of strategy and technology. To a strong-minded venture capitalist such as Frank Caulfield of Kleiner, Perkins, Caulfield, & Byers–or even to a smooth operator such as John Doerr—Campbell appeared to be a pushover. A man with no money, no social ivy, no advanced professional degrees, no obvious scientific mastery, he was a disposable tool: some kid who had snuck into the E-square huddle at Intel and popped our into the end zone just in time to make a miracle catch of several million dollars in venture capital.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.

Establishments Assume New Methods Are Unsound Methods

(p. 188) For the next two years, Conway coordinated her efforts under Sutherland at PARC with Mead’s ongoing work at Caltech. But she was frustrated with the pace of progress. There was no shortage of innovative design ideas; computerized design tools had advanced dramatically since Mead’s first efforts several years before. Yet the industry as a whole continued in the old rut. As Conway put it later, the problem was “How can you take methods that are new, methods that are not in common use and therefore perhaps considered unsound methods, and turn them into sound methods?” [Conway’s italics].

She saw the challenge in the terms described in Thomas Kuhn’s popular book The Structure of Scientific Revolutions. it was the problem that took Boltzmann to his grave. It was the problem of innovation depicted by economist Joseph Schumpeter in his essays on entrepreneurship: new systems lay waste to the systems of the past. Creativity is a solution for the creator and the new ventures he launches. But it wreaks dissolution–“creative destruction,” in Schumpeter’s words– for the defenders of old methods. In fact, no matter how persuasive the advocates of change, it is very rare that an entrenched establishment will reform its ways. Establishments die or retire or fall in revolution; they only rarely transform themselves.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.
(Note: italics in original.)

“If I Listened to Logical People I Would Never Have Succeeded”

We may never know if Gilder’s optimism about Takahashi’s DRAM initiative was prescient or misguided. Takahashi died of pneumonia at age 60 in 1989, the same year that Gilder’s Mircocosm book was published. (Takahashi’s successor abandoned the DRAM initiative.)

(p. 154) Many experts said it could not be done. DRAMs represent the most demanding feat of mass production in all world commerce. None of the complex procedures is easy to automate. Automation itself, moreover, is no final solution to the problems of dust and contamination. Machines collect and shed particles and toxic wastes nearly as much as people do. Chip experts derided the view that these ten-layered and multiply patterned electronic devices, requiring hundreds of process steps, resembled ball bearings in any significant way.

Takahashi knew all that. But experts had derided almost every decision he had made throughout his career. “Successful people,” he says, “surprise the world by doing things that ordinary logical people (p. 155) think are stupid.” The experts told him he could not compete in America with New Hampshire Ball Bearing. He ended up buying it. The experts and bankers had told him not to build his biggest ball-bearing plants in Singapore and Thailand. Those plants are now the world’s most productive. The experts told him not to buy two major facilities in the United States, full of obsolescent equipment and manned by high-priced workers. But those facilities now dominate the American market for precision ball bearings. Now the experts told him he couldn’t make DRAMs. He knew he could. “If I listened to logical people,” he says, “I would never have succeeded.”

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.

Replication Easier than “Sweat and Anguish” of First Discovery

(p. 137) No one will deny that Japan’s triumph in semiconductors depended on American inventions. But many analysts rush on to a further theory that the Japanese remained far behind the United States until the mid- 1970s and caught up only through a massive government program of industrial targeting of American inventions by MITI.
Perhaps the leading expert on the subject is Makoto Kikuchi, a twenty-six-year veteran of MITI laboratories, now director of the Sony Research Center. The creator of the first transistor made in Japan, he readily acknowledges the key role of American successes in fueling the advances in his own country: “Replicating someone else’s experiment, no matter how much painful effort it might take, is nothing compared with the sweat and anguish of the men who first made the discovery.”

Kikuchi explains: “No matter how many failures I had, I knew that somewhere in the world people had already succeeded in making a transistor. The first discoverers . . . had to continue their work, their long succession of failures, face-to-face with the despairing possibility that in the end they might never succeed. . . . As I fought my own battle with the transistor, I felt this lesson in my very bones.” Working at MITI’s labs, Kikuchi was deeply grateful for the technological targets offered by American inventors.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.
(Note: ellipses in original.)

Entrepreneurial Innovation Comes from Diverse Outsiders Rather than Establishments

(p. 113) Firms that win by the curve of mind often abandon it when they establish themselves in the world of matter. They fight to preserve the value of their material investments in plant and equipment that embody the ideas and experience of their early years of success. They begin to exalt expertise and old knowledge, rights and reputation, over the constant learning and experience of innovative capitalism. They get fat.

A fat cat drifting off the curve, however, is a sitting duck for new nations and companies getting on it. The curve of mind thus tends to favor outsiders over establishments of all kinds. At the capitalist ball, the blood is seldom blue or the money rarely seasoned. Microcosmic technologies are no exception. Capitalism’s most lavish display, the microcosm, is no respecter of persons.
The United States did not enter the microcosm through the portals of the Ivy League, with Brooks Brothers suits, gentleman Cs, and warbling society wives. Few people who think they are in already can summon the energies to break in. From immigrants and outcasts, street toughs and science wonks, nerds and boffins, the bearded and the beer-bellied, the tacky and uptight, and sometimes weird, the born again and born yesterday, with Adam’s apples bobbing, psyches (p. 114) throbbing, and acne galore, the fraternity of the pizza breakfast, the Ferrari dream, the silicon truth, the midnight modem, and the seventy-hour week, from dirt farms and redneck shanties, trailer parks and Levittowns, in a rainbow parade of all colors and wavelengths, of the hyperneat and the sty high, the crewcut and khaki, the pony-tailed and punk, accented from Britain and Madras, from Israel and Malaya, from Paris and Parris Island, from Iowa and Havana, from Brooklyn and Boise and Belgrade and Vienna and Vietnam, from the coarse fanaticism and desperation, ambition and hunger, genius and sweat of the outsider, the downtrodden, the banished, and the bullied come most of the progress in the world and in Silicon Valley.

Source:

Gilder, George. Microcosm: The Quantum Revolution in Economics and Technology. Paperback ed. New York: Touchstone, 1990.

“When the Sons of the Communists Themselves Wanted to Become Capitalists and Entrepreneurs”

JanicekJosefPlasticPeople2009-12-19.jpg“Josef Janicek, 61, was on the keyboard for a concert in Prague last week by the band Plastic People of the Universe.” Source of caption and photo: online version of the NYT article quoted and cited below.

(p. A10) PRAGUE — It has been called the Velvet Revolution, a revolution so velvety that not a single bullet was fired.

But the largely peaceful overthrow of four decades of Communism in Czechoslovakia that kicked off on Nov. 17, 1989, can also be linked decades earlier to a Velvet Underground-inspired rock band called the Plastic People of the Universe. Band members donned satin togas, painted their faces with lurid colors and wrote wild, sometimes angry, incendiary songs.
It was their refusal to cut their long, dank hair; their willingness to brave prison cells rather than alter their darkly subversive lyrics (“peace, peace, peace, just like toilet paper!”); and their talent for tapping into a generation’s collective despair that helped change the future direction of a nation.
“We were unwilling heroes who just wanted to play rock ‘n’ roll,” said Josef Janicek, 61, the band’s doughy-faced keyboard player, who bears a striking resemblance to John Lennon and still sports the grungy look that once helped get him arrested. “The Bolsheviks understood that culture and music has a strong influence on people, and our refusal to compromise drove them insane.”
. . .
In 1970, the Communist government revoked the license for the Plastics to perform in public, forcing the band to go underground. In February 1976, the Plastic People organized a music festival in the small town of Bojanovice — dubbed “Magor’s Wedding” — featuring 13 other bands. One month later, the police set out to silence the musical rebels, arresting dozens. Mr. Janicek was jailed for six months; Mr. Jirous and other band members got longer sentences.
Mr. Havel, already a leading dissident, was irate. The trial of the Plastic People that soon followed became a cause célèbre.
Looking back on the Velvet Revolution they helped inspire, however indirectly, Mr. Janicek recalled that on Nov. 17, 1989, the day of mass demonstrations, he was in a pub nursing a beer. He argued that the revolution had been an evolution, fomented by the loosening of Communism’s grip under Mikhail Gorbachev and the overwhelming frustration of ordinary people with their grim, everyday lives. “The Bolsheviks knew the game was up,” he said, “when the sons of the Communists themselves wanted to become capitalists and entrepreneurs.”

For the full story, see:
DAN BILEFSKY. “Czechs’ Velvet Revolution Paved by Plastic People.” The New York Times (Mon., November 16, 2009): A10.
(Note: the online version of the article is dated November 15, 2009.)
(Note: ellipsis added.)